These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 36575322)
1. Permissive hypercapnia and hypercapnic hypoxia inhibit signaling pathways of neuronal apoptosis in ischemic/hypoxic rats. Tregub P; Malinovskaya N; Hilazheva E; Morgun A; Kulikov V Mol Biol Rep; 2023 Mar; 50(3):2317-2333. PubMed ID: 36575322 [TBL] [Abstract][Full Text] [Related]
2. Combined exposure to hypercapnia and hypoxia provides its maximum neuroprotective effect during focal ischemic injury in the brain. Tregub P; Kulikov V; Motin Y; Bespalov A; Osipov I J Stroke Cerebrovasc Dis; 2015 Feb; 24(2):381-7. PubMed ID: 25498739 [TBL] [Abstract][Full Text] [Related]
3. Hypercapnia and Hypoxia Stimulate Proliferation of Astrocytes and Neurons In Vitro. Tregub PP; Morgun AV; Osipova ED; Kulikov VP; Malinovskaya NA; Kuzovkov DA Bull Exp Biol Med; 2020 Oct; 169(6):755-758. PubMed ID: 33098512 [TBL] [Abstract][Full Text] [Related]
4. Ultrastructural Changes in Hippocampal Region CA1 Neurons After Exposure to Permissive Hypercapnia and/or Normobaric Hypoxia. Tregub P; Motin Y; Kulikov V; Kovzelev P; Chaykovskaya A; Ibrahimli I Cell Mol Neurobiol; 2023 Nov; 43(8):4209-4217. PubMed ID: 37716927 [TBL] [Abstract][Full Text] [Related]
5. Tolerance to acute hypoxia maximally increases in case of joint effect of normobaric hypoxia and permissive hypercapnia in rats. Tregub P; Kulikov V; Bespalov A Pathophysiology; 2013 Jun; 20(3):165-70. PubMed ID: 24083870 [TBL] [Abstract][Full Text] [Related]
7. Hypercapnia potentiates HIF-1α activation in the brain of rats exposed to intermittent hypoxia. Tregub PP; Malinovskaya NA; Morgun AV; Osipova ED; Kulikov VP; Kuzovkov DA; Kovzelev PD Respir Physiol Neurobiol; 2020 Jul; 278():103442. PubMed ID: 32305676 [TBL] [Abstract][Full Text] [Related]
8. Repetitive hypoxic preconditioning attenuates renal ischemia/reperfusion induced oxidative injury via upregulating HIF-1 alpha-dependent bcl-2 signaling. Yang CC; Lin LC; Wu MS; Chien CT; Lai MK Transplantation; 2009 Dec; 88(11):1251-60. PubMed ID: 19996924 [TBL] [Abstract][Full Text] [Related]
9. Proliferative and Synthetic Activity of Nerve Cells after Combined or Individual Exposure to Hypoxia and Hypercapnia. Tregub PP; Kulikov VP; Rucheikin NY; Belova EV; Motin YG Bull Exp Biol Med; 2015 Jul; 159(3):334-6. PubMed ID: 26201905 [TBL] [Abstract][Full Text] [Related]
10. Hypercapnia Modulates the Activity of Adenosine A1 Receptors and mitoK Tregub PP; Malinovskaya NA; Osipova ED; Morgun AV; Kulikov VP; Kuzovkov DA Neuromolecular Med; 2022 Jun; 24(2):155-168. PubMed ID: 34115290 [TBL] [Abstract][Full Text] [Related]
11. Molecular Mechanisms of Neuroprotection after the Intermittent Exposures of Hypercapnic Hypoxia. Tregub PP; Kulikov VP; Ibrahimli I; Tregub OF; Volodkin AV; Ignatyuk MA; Kostin AA; Atiakshin DA Int J Mol Sci; 2024 Mar; 25(7):. PubMed ID: 38612476 [TBL] [Abstract][Full Text] [Related]
12. Ligustrazine suppresses neuron apoptosis via the Bax/Bcl-2 and caspase-3 pathway in PC12 cells and in rats with vascular dementia. Zhao T; Fu Y; Sun H; Liu X IUBMB Life; 2018 Jan; 70(1):60-70. PubMed ID: 29247598 [TBL] [Abstract][Full Text] [Related]
13. Hypercapnia induces IL-1β overproduction via activation of NLRP3 inflammasome: implication in cognitive impairment in hypoxemic adult rats. Ding HG; Deng YY; Yang RQ; Wang QS; Jiang WQ; Han YL; Huang LQ; Wen MY; Zhong WH; Li XS; Yang F; Zeng HK J Neuroinflammation; 2018 Jan; 15(1):4. PubMed ID: 29304864 [TBL] [Abstract][Full Text] [Related]
14. Inhibition of Apoptosis is a Potential Way to Improving Ischemic Brain Tolerance in Combined Exposure to Hypercapnia and Hypoxia. Tregub PP; Malinovskaya NA; Kulikov VP; Salmina AB; Nagibaeva ME; Zabrodina AS; Gertsog GE; Antonova SK Bull Exp Biol Med; 2016 Sep; 161(5):666-669. PubMed ID: 27709386 [TBL] [Abstract][Full Text] [Related]
15. Protective effects of propofol against whole cerebral ischemia/reperfusion injury in rats through the inhibition of the apoptosis-inducing factor pathway. Tao T; Li CL; Yang WC; Zeng XZ; Song CY; Yue ZY; Dong H; Qian H Brain Res; 2016 Aug; 1644():9-14. PubMed ID: 27163721 [TBL] [Abstract][Full Text] [Related]
16. Effects of permissive hypercapnia on transient global cerebral ischemia-reperfusion injury in rats. Zhou Q; Cao B; Niu L; Cui X; Yu H; Liu J; Li H; Li W Anesthesiology; 2010 Feb; 112(2):288-97. PubMed ID: 20098129 [TBL] [Abstract][Full Text] [Related]
17. Influence of hypoxic and hypercapnic acidosis on brain water content after forebrain ischemia in the rat. Morimoto Y; Yamamura T; Kemmotsu O Crit Care Med; 1993 Jun; 21(6):907-13. PubMed ID: 8504661 [TBL] [Abstract][Full Text] [Related]
18. Intracellular Bax translocation after transient cerebral ischemia: implications for a role of the mitochondrial apoptotic signaling pathway in ischemic neuronal death. Cao G; Minami M; Pei W; Yan C; Chen D; O'Horo C; Graham SH; Chen J J Cereb Blood Flow Metab; 2001 Apr; 21(4):321-33. PubMed ID: 11323518 [TBL] [Abstract][Full Text] [Related]
19. Atorvastatin inhibits neuronal apoptosis via activating cAMP/PKA/p-CREB/BDNF pathway in hypoxic-ischemic neonatal rats. Yu L; Liu S; Zhou R; Sun H; Su X; Liu Q; Li S; Ying J; Zhao F; Mu D; Qu Y FASEB J; 2022 Apr; 36(4):e22263. PubMed ID: 35303316 [TBL] [Abstract][Full Text] [Related]
20. G-CSF attenuates neuroinflammation and neuronal apoptosis via the mTOR/p70SK6 signaling pathway in neonatal Hypoxia-Ischemia rat model. Dumbuya JS; Chen L; Shu SY; Ma L; Luo W; Li F; Wu JY; Wang B Brain Res; 2020 Jul; 1739():146817. PubMed ID: 32246916 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]