BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 36575354)

  • 1. Particle preparation of pharmaceutical compounds using supercritical antisolvent process: current status and future perspectives.
    Kumar R; Thakur AK; Kali G; Pitchaiah KC; Arya RK; Kulabhi A
    Drug Deliv Transl Res; 2023 Apr; 13(4):946-965. PubMed ID: 36575354
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoparticles in the pharmaceutical industry and the use of supercritical fluid technologies for nanoparticle production.
    Sheth P; Sandhu H; Singhal D; Malick W; Shah N; Kislalioglu MS
    Curr Drug Deliv; 2012 May; 9(3):269-84. PubMed ID: 22283656
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A critical review on the particle generation and other applications of rapid expansion of supercritical solution.
    Kumar R; Thakur AK; Banerjee N; Chaudhari P
    Int J Pharm; 2021 Oct; 608():121089. PubMed ID: 34530097
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Process parameters and morphology in puerarin, phospholipids and their complex microparticles generation by supercritical antisolvent precipitation.
    Li Y; Yang DJ; Chen SL; Chen SB; Chan AS
    Int J Pharm; 2008 Jul; 359(1-2):35-45. PubMed ID: 18440736
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Supercritical carbon dioxide-based technologies for the production of drug nanoparticles/nanocrystals - A comprehensive review.
    Padrela L; Rodrigues MA; Duarte A; Dias AMA; Braga MEM; de Sousa HC
    Adv Drug Deliv Rev; 2018 Jun; 131():22-78. PubMed ID: 30026127
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Liquid antisolvent crystallization of pharmaceutical compounds: current status and future perspectives.
    Kumar R; Thakur AK; Banerjee N; Kumar A; Gaurav GK; Arya RK
    Drug Deliv Transl Res; 2023 Feb; 13(2):400-418. PubMed ID: 35953765
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancing the solubility and bioavailability of poorly water-soluble drugs using supercritical antisolvent (SAS) process.
    Abuzar SM; Hyun SM; Kim JH; Park HJ; Kim MS; Park JS; Hwang SJ
    Int J Pharm; 2018 Mar; 538(1-2):1-13. PubMed ID: 29278733
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ampicillin Nanoparticles Production via Supercritical CO2 Gas Antisolvent Process.
    Esfandiari N; Ghoreishi SM
    AAPS PharmSciTech; 2015 Dec; 16(6):1263-9. PubMed ID: 25771736
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of critical process variables affecting particle size following precipitation using a supercritical fluid.
    Sacha GA; Schmitt WJ; Nail SL
    Pharm Dev Technol; 2006; 11(2):187-94. PubMed ID: 16749529
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PVP/aprepitant microcapsules produced by supercritical antisolvent process.
    Zhang Z; Hao G; Sun X; Wang F; Zhang D; Hu D
    Sci Rep; 2024 May; 14(1):10679. PubMed ID: 38724534
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation and physicochemical properties of vinblastine microparticles by supercritical antisolvent process.
    Zhang X; Zhao X; Zu Y; Chen X; Lu Q; Ma Y; Yang L
    Int J Mol Sci; 2012 Oct; 13(10):12598-607. PubMed ID: 23202916
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of supercritical antisolvent method in drug encapsulation: a review.
    Kalani M; Yunus R
    Int J Nanomedicine; 2011; 6():1429-42. PubMed ID: 21796245
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development in modeling submicron particle formation in two phases flow of solvent-supercritical antisolvent emulsion.
    Dukhin SS; Shen Y; Dave R; Pfeffer R
    Adv Colloid Interface Sci; 2007 Oct; 134-135():72-88. PubMed ID: 17568550
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Applications of supercritical fluids to enhance the dissolution behaviors of Furosemide by generation of microparticles and solid dispersions.
    De Zordi N; Moneghini M; Kikic I; Grassi M; Del Rio Castillo AE; Solinas D; Bolger MB
    Eur J Pharm Biopharm; 2012 May; 81(1):131-41. PubMed ID: 22266263
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation of inclusion complex of apigenin-hydroxypropyl-β-cyclodextrin by using supercritical antisolvent process for dissolution and bioavailability enhancement.
    Huang Y; Zu Y; Zhao X; Wu M; Feng Z; Deng Y; Zu C; Wang L
    Int J Pharm; 2016 Sep; 511(2):921-30. PubMed ID: 27515291
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of supercritical fluid density on nanoencapsulated drug particle size using the supercritical antisolvent method.
    Kalani M; Yunus R
    Int J Nanomedicine; 2012; 7():2165-72. PubMed ID: 22619552
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of solid dispersions produced by supercritical antisolvent and spray-freezing technologies.
    Badens E; Majerik V; Horváth G; Szokonya L; Bosc N; Teillaud E; Charbit G
    Int J Pharm; 2009 Jul; 377(1-2):25-34. PubMed ID: 19442711
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation, characterization and in vivo evaluation of amorphous atorvastatin calcium nanoparticles using supercritical antisolvent (SAS) process.
    Kim MS; Jin SJ; Kim JS; Park HJ; Song HS; Neubert RH; Hwang SJ
    Eur J Pharm Biopharm; 2008 Jun; 69(2):454-65. PubMed ID: 18359211
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancement of solubility, antioxidant ability and bioavailability of taxifolin nanoparticles by liquid antisolvent precipitation technique.
    Zu Y; Wu W; Zhao X; Li Y; Wang W; Zhong C; Zhang Y; Zhao X
    Int J Pharm; 2014 Aug; 471(1-2):366-76. PubMed ID: 24882039
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced bioavailability of sirolimus via preparation of solid dispersion nanoparticles using a supercritical antisolvent process.
    Kim MS; Kim JS; Park HJ; Cho WK; Cha KH; Hwang SJ
    Int J Nanomedicine; 2011; 6():2997-3009. PubMed ID: 22162657
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.