These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
241 related articles for article (PubMed ID: 36575367)
1. Genetic control of tolerance to drought stress in soybean. Saleem A; Roldán-Ruiz I; Aper J; Muylle H BMC Plant Biol; 2022 Dec; 22(1):615. PubMed ID: 36575367 [TBL] [Abstract][Full Text] [Related]
2. Genome-Wide Association Analyses Reveal Genomic Regions Controlling Canopy Wilting in Soybean. Steketee CJ; Schapaugh WT; Carter TE; Li Z G3 (Bethesda); 2020 Apr; 10(4):1413-1425. PubMed ID: 32111650 [TBL] [Abstract][Full Text] [Related]
3. Unveiling synergistic QTLs associated with slow wilting in soybean (Glycine max [L.] Merr.). Kwon H; Kim MY; Yang X; Lee SH Theor Appl Genet; 2024 Mar; 137(4):85. PubMed ID: 38502238 [TBL] [Abstract][Full Text] [Related]
4. Identification of genomic regions involved in tolerance to drought stress and drought stress induced leaf senescence in juvenile barley. Wehner GG; Balko CC; Enders MM; Humbeck KK; Ordon FF BMC Plant Biol; 2015 May; 15():125. PubMed ID: 25998066 [TBL] [Abstract][Full Text] [Related]
5. Genome-wide association study provides new insight into the underlying mechanism of drought tolerance during seed germination stage in soybean. Aleem M; Razzaq MK; Aleem M; Yan W; Sharif I; Siddiqui MH; Aleem S; Iftikhar MS; Karikari B; Ali Z; Begum N; Zhao T Sci Rep; 2024 Sep; 14(1):20765. PubMed ID: 39237583 [TBL] [Abstract][Full Text] [Related]
6. Comprehensive Identification of Drought Tolerance QTL-Allele and Candidate Gene Systems in Chinese Cultivated Soybean Population. Wang W; Zhou B; He J; Zhao J; Liu C; Chen X; Xing G; Chen S; Xing H; Gai J Int J Mol Sci; 2020 Jul; 21(14):. PubMed ID: 32650485 [TBL] [Abstract][Full Text] [Related]
7. Identification of major QTLs for drought tolerance in soybean, together with a novel candidate gene, GmUAA6. Jiang W; Liu Y; Zhang C; Pan L; Wang W; Zhao C; Zhao T; Li Y J Exp Bot; 2024 Mar; 75(7):1852-1871. PubMed ID: 38226463 [TBL] [Abstract][Full Text] [Related]
8. Unraveling the genetic architecture for carbon and nitrogen related traits and leaf hydraulic conductance in soybean using genome-wide association analyses. Steketee CJ; Sinclair TR; Riar MK; Schapaugh WT; Li Z BMC Genomics; 2019 Nov; 20(1):811. PubMed ID: 31694528 [TBL] [Abstract][Full Text] [Related]
9. Identification of Quantitative Trait Locus and Candidate Genes for Drought Tolerance in a Soybean Recombinant Inbred Line Population. Ouyang W; Chen L; Ma J; Liu X; Chen H; Yang H; Guo W; Shan Z; Yang Z; Chen S; Zhan Y; Zhang H; Cao D; Zhou X Int J Mol Sci; 2022 Sep; 23(18):. PubMed ID: 36142739 [TBL] [Abstract][Full Text] [Related]
10. Mapping of quantitative trait loci for canopy-wilting trait in soybean (Glycine max L. Merr). Abdel-Haleem H; Carter TE; Purcell LC; King CA; Ries LL; Chen P; Schapaugh W; Sinclair TR; Boerma HR Theor Appl Genet; 2012 Sep; 125(5):837-46. PubMed ID: 22566068 [TBL] [Abstract][Full Text] [Related]
11. Genome-wide association mapping of canopy wilting in diverse soybean genotypes. Kaler AS; Ray JD; Schapaugh WT; King CA; Purcell LC Theor Appl Genet; 2017 Oct; 130(10):2203-2217. PubMed ID: 28730464 [TBL] [Abstract][Full Text] [Related]
12. The importance of slow canopy wilting in drought tolerance in soybean. Ye H; Song L; Schapaugh WT; Ali ML; Sinclair TR; Riar MK; Raymond RN; Li Y; Vuong T; Valliyodan B; Pizolato Neto A; Klepadlo M; Song Q; Shannon JG; Chen P; Nguyen HT J Exp Bot; 2020 Jan; 71(2):642-652. PubMed ID: 30980084 [TBL] [Abstract][Full Text] [Related]
13. Analysis of QTL-allele system conferring drought tolerance at seedling stage in a nested association mapping population of soybean [Glycine max (L.) Merr.] using a novel GWAS procedure. Khan MA; Tong F; Wang W; He J; Zhao T; Gai J Planta; 2018 Oct; 248(4):947-962. PubMed ID: 29980855 [TBL] [Abstract][Full Text] [Related]
14. Identification of quantitative trait loci associated with canopy temperature in soybean. Bazzer SK; Purcell LC Sci Rep; 2020 Oct; 10(1):17604. PubMed ID: 33077811 [TBL] [Abstract][Full Text] [Related]
15. Identification of new loci for salt tolerance in soybean by high-resolution genome-wide association mapping. Do TD; Vuong TD; Dunn D; Clubb M; Valliyodan B; Patil G; Chen P; Xu D; Nguyen HT; Shannon JG BMC Genomics; 2019 Apr; 20(1):318. PubMed ID: 31023240 [TBL] [Abstract][Full Text] [Related]
16. Detection of quantitative trait loci for yield and drought tolerance traits in soybean using a recombinant inbred line population. Du W; Yu D; Fu S J Integr Plant Biol; 2009 Sep; 51(9):868-78. PubMed ID: 19723246 [TBL] [Abstract][Full Text] [Related]
17. Genetic mapping reveals the complex genetic architecture controlling slow canopy wilting in soybean. Menke E; Steketee CJ; Song Q; Schapaugh WT; Carter TE; Fallen B; Li Z Theor Appl Genet; 2024 Apr; 137(5):107. PubMed ID: 38632129 [TBL] [Abstract][Full Text] [Related]
18. Plant vigour QTLs co-map with an earlier reported QTL hotspot for drought tolerance while water saving QTLs map in other regions of the chickpea genome. Sivasakthi K; Thudi M; Tharanya M; Kale SM; Kholová J; Halime MH; Jaganathan D; Baddam R; Thirunalasundari T; Gaur PM; Varshney RK; Vadez V BMC Plant Biol; 2018 Feb; 18(1):29. PubMed ID: 29409451 [TBL] [Abstract][Full Text] [Related]
19. Genome-wide association analysis for yield-related traits at the R6 stage in a Chinese soybean mini core collection. Li X; Zhou Y; Bu Y; Wang X; Zhang Y; Guo N; Zhao J; Xing H Genes Genomics; 2021 Aug; 43(8):897-912. PubMed ID: 33956328 [TBL] [Abstract][Full Text] [Related]
20. GWAS of agronomic traits in soybean collection included in breeding pool in Kazakhstan. Zatybekov A; Abugalieva S; Didorenko S; Gerasimova Y; Sidorik I; Anuarbek S; Turuspekov Y BMC Plant Biol; 2017 Nov; 17(Suppl 1):179. PubMed ID: 29143671 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]