These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 36575675)

  • 1. Detecting and analyzing topics of massive COVID-19 related tweets for various countries.
    Azizi F; Hajiabadi H; Vahdat-Nejad H; Khosravi MH
    Comput Electr Eng; 2023 Mar; 106():108561. PubMed ID: 36575675
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Topics, Trends, and Sentiments of Tweets About the COVID-19 Pandemic: Temporal Infoveillance Study.
    Chandrasekaran R; Mehta V; Valkunde T; Moustakas E
    J Med Internet Res; 2020 Oct; 22(10):e22624. PubMed ID: 33006937
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Top Concerns of Tweeters During the COVID-19 Pandemic: Infoveillance Study.
    Abd-Alrazaq A; Alhuwail D; Househ M; Hamdi M; Shah Z
    J Med Internet Res; 2020 Apr; 22(4):e19016. PubMed ID: 32287039
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Emotions and Topics Expressed on Twitter During the COVID-19 Pandemic in the United Kingdom: Comparative Geolocation and Text Mining Analysis.
    Alhuzali H; Zhang T; Ananiadou S
    J Med Internet Res; 2022 Oct; 24(10):e40323. PubMed ID: 36150046
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Emergency Physician Twitter Use in the COVID-19 Pandemic as a Potential Predictor of Impending Surge: Retrospective Observational Study.
    Margus C; Brown N; Hertelendy AJ; Safferman MR; Hart A; Ciottone GR
    J Med Internet Res; 2021 Jul; 23(7):e28615. PubMed ID: 34081612
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Emotion diffusion effect: Negative sentiment COVID-19 tweets of public organizations attract more responses from followers.
    Yu H; Yang CC; Yu P; Liu K
    PLoS One; 2022; 17(3):e0264794. PubMed ID: 35259181
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Examining Public Sentiments and Attitudes Toward COVID-19 Vaccination: Infoveillance Study Using Twitter Posts.
    Chandrasekaran R; Desai R; Shah H; Kumar V; Moustakas E
    JMIR Infodemiology; 2022; 2(1):e33909. PubMed ID: 35462735
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of Hate Speech in COVID-19-Related Tweets in the Arab Region: Deep Learning and Topic Modeling Approach.
    Alshalan R; Al-Khalifa H; Alsaeed D; Al-Baity H; Alshalan S
    J Med Internet Res; 2020 Dec; 22(12):e22609. PubMed ID: 33207310
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Social media analysis of Twitter tweets related to ASD in 2019-2020, with particular attention to COVID-19: topic modelling and sentiment analysis.
    Corti L; Zanetti M; Tricella G; Bonati M
    J Big Data; 2022; 9(1):113. PubMed ID: 36465137
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysing Sentiment and Topics Related to Multiple Sclerosis on Twitter.
    Giunti G; Claes M; Dorronzoro Zubiete E; Rivera-Romero O; Gabarron E
    Stud Health Technol Inform; 2020 Jun; 270():911-915. PubMed ID: 32570514
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Public Perception of the COVID-19 Pandemic on Twitter: Sentiment Analysis and Topic Modeling Study.
    Boon-Itt S; Skunkan Y
    JMIR Public Health Surveill; 2020 Nov; 6(4):e21978. PubMed ID: 33108310
    [TBL] [Abstract][Full Text] [Related]  

  • 12. COVID-19 Vaccine and Social Media in the U.S.: Exploring Emotions and Discussions on Twitter.
    Karami A; Zhu M; Goldschmidt B; Boyajieff HR; Najafabadi MM
    Vaccines (Basel); 2021 Sep; 9(10):. PubMed ID: 34696167
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Public Reactions towards the COVID-19 Pandemic on Twitter in the United Kingdom and the United States.
    Zou C; Wang X; Xie Z; Li D
    medRxiv; 2020 Jul; ():. PubMed ID: 32766599
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Twitter Sentiment Analysis of Long COVID Syndrome.
    Awoyemi T; Ebili U; Olusanya A; Ogunniyi KE; Adejumo AV
    Cureus; 2022 Jun; 14(6):e25901. PubMed ID: 35844354
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Geographic Differences in Cannabis Conversations on Twitter: Infodemiology Study.
    van Draanen J; Tao H; Gupta S; Liu S
    JMIR Public Health Surveill; 2020 Oct; 6(4):e18540. PubMed ID: 33016888
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An "Infodemic": Leveraging High-Volume Twitter Data to Understand Early Public Sentiment for the Coronavirus Disease 2019 Outbreak.
    Medford RJ; Saleh SN; Sumarsono A; Perl TM; Lehmann CU
    Open Forum Infect Dis; 2020 Jul; 7(7):ofaa258. PubMed ID: 33117854
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mapping Individual Differences on the Internet: Case Study of the Type 1 Diabetes Community.
    Bedford-Petersen C; Weston SJ
    JMIR Diabetes; 2021 Oct; 6(4):e30756. PubMed ID: 34652277
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Twitter Discussions and Emotions About the COVID-19 Pandemic: Machine Learning Approach.
    Xue J; Chen J; Hu R; Chen C; Zheng C; Su Y; Zhu T
    J Med Internet Res; 2020 Nov; 22(11):e20550. PubMed ID: 33119535
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Public Opinions towards COVID-19 in California and New York on Twitter.
    Wang X; Zou C; Xie Z; Li D
    medRxiv; 2020 Jul; ():. PubMed ID: 32699856
    [TBL] [Abstract][Full Text] [Related]  

  • 20. US Black Maternal Health Advocacy Topics and Trends on Twitter: Temporal Infoveillance Study.
    Grigsby-Toussaint D; Champagne A; Uhr J; Silva E; Noh M; Bradley A; Rashleigh P
    JMIR Infodemiology; 2022; 2(1):e30885. PubMed ID: 35578642
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.