These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 36575924)
1. Overexpression of maize ZmLOX6 in Arabidopsis thaliana enhances damage-induced pentyl leaf volatile emissions that affect plant growth and interaction with aphids. Tolley JP; Gorman Z; Lei J; Yeo IC; Nagashima Y; Joshi V; Zhu-Salzman K; Kolomiets MV; Koiwa H J Exp Bot; 2023 Mar; 74(6):1990-2004. PubMed ID: 36575924 [TBL] [Abstract][Full Text] [Related]
2. The Synthesis of Pentyl Leaf Volatiles and Their Role in Resistance to Anthracnose Leaf Blight. Gorman Z; Tolley JP; Koiwa H; Kolomiets MV Front Plant Sci; 2021; 12():719587. PubMed ID: 34512698 [TBL] [Abstract][Full Text] [Related]
3. A novel plastidial lipoxygenase of maize (Zea mays) ZmLOX6 encodes for a fatty acid hydroperoxide lyase and is uniquely regulated by phytohormones and pathogen infection. Gao X; Stumpe M; Feussner I; Kolomiets M Planta; 2008 Jan; 227(2):491-503. PubMed ID: 17922288 [TBL] [Abstract][Full Text] [Related]
4. Relative contribution of LOX10, green leaf volatiles and JA to wound-induced local and systemic oxylipin and hormone signature in Zea mays (maize). He Y; Borrego EJ; Gorman Z; Huang PC; Kolomiets MV Phytochemistry; 2020 Jun; 174():112334. PubMed ID: 32172019 [TBL] [Abstract][Full Text] [Related]
5. Insect herbivores selectively suppress the HPL branch of the oxylipin pathway in host plants. Savchenko T; Pearse IS; Ignatia L; Karban R; Dehesh K Plant J; 2013 Feb; 73(4):653-62. PubMed ID: 23134585 [TBL] [Abstract][Full Text] [Related]
6. The green peach aphid, Myzus persicae, acquires a LIPOXYGENASE5-derived oxylipin from Arabidopsis thaliana, which promotes colonization of the host plant. Nalam VJ; Keereetaweep J; Shah J Plant Signal Behav; 2013 Jan; 8(1):e22735. PubMed ID: 23221749 [TBL] [Abstract][Full Text] [Related]
7. Investigations into plant biochemical wound-response pathways involved in the production of aphid-induced plant volatiles. Girling RD; Madison R; Hassall M; Poppy GM; Turner JG J Exp Bot; 2008; 59(11):3077-85. PubMed ID: 18583348 [TBL] [Abstract][Full Text] [Related]
8. A Comparison of the Effects of Li J; Avila CA; Tieman DM; Klee HJ; Goggin FL Int J Mol Sci; 2018 Apr; 19(4):. PubMed ID: 29617299 [TBL] [Abstract][Full Text] [Related]
9. Overexpression of IRM1 enhances resistance to aphids in Arabidopsis thaliana. Chen X; Zhang Z; Visser RG; Broekgaarden C; Vosman B PLoS One; 2013; 8(8):e70914. PubMed ID: 23951039 [TBL] [Abstract][Full Text] [Related]
10. Role of the lipoxygenase/lyase pathway of host-food plants in the host searching behavior of two parasitoid species, Cotesia glomerata and Cotesia plutellae. Shiojiri K; Ozawa R; Matsui K; Kishimoto K; Kugimiya S; Takabayashi J J Chem Ecol; 2006 May; 32(5):969-79. PubMed ID: 16739017 [TBL] [Abstract][Full Text] [Related]
11. Volatile compound biosynthesis by green leaves from an Arabidopsis thaliana hydroperoxide lyase knockout mutant. Salas JJ; García-Gonzalez DL; Aparicio R J Agric Food Chem; 2006 Oct; 54(21):8199-205. PubMed ID: 17032029 [TBL] [Abstract][Full Text] [Related]
12. Green leaf volatile-burst in Arabidopsis is governed by galactolipid oxygenation by a lipoxygenase that is under control of calcium ion. Mochizuki S; Matsui K Biochem Biophys Res Commun; 2018 Nov; 505(3):939-944. PubMed ID: 30309649 [TBL] [Abstract][Full Text] [Related]
13. Production of the Green Leaf Volatile ( Yactayo-Chang JP; Hunter CT; Alborn HT; Christensen SA; Block AK Plants (Basel); 2022 Aug; 11(17):. PubMed ID: 36079583 [TBL] [Abstract][Full Text] [Related]
14. Arabidopsis lipoxygenase 2 is essential for formation of green leaf volatiles and five-carbon volatiles. Mochizuki S; Sugimoto K; Koeduka T; Matsui K FEBS Lett; 2016 Apr; 590(7):1017-27. PubMed ID: 26991128 [TBL] [Abstract][Full Text] [Related]
15. Emission of herbivore-induced volatiles in absence of a herbivore--response of Zea mays to green leaf volatiles and terpenoids. Ruther J; Fürstenau B Z Naturforsch C J Biosci; 2005; 60(9-10):743-56. PubMed ID: 16320618 [TBL] [Abstract][Full Text] [Related]
16. Maize death acids, 9-lipoxygenase-derived cyclopente(a)nones, display activity as cytotoxic phytoalexins and transcriptional mediators. Christensen SA; Huffaker A; Kaplan F; Sims J; Ziemann S; Doehlemann G; Ji L; Schmitz RJ; Kolomiets MV; Alborn HT; Mori N; Jander G; Ni X; Sartor RC; Byers S; Abdo Z; Schmelz EA Proc Natl Acad Sci U S A; 2015 Sep; 112(36):11407-12. PubMed ID: 26305953 [TBL] [Abstract][Full Text] [Related]
17. Bacillus methylotrophicus M4-96 isolated from maize (Zea mays) rhizoplane increases growth and auxin content in Arabidopsis thaliana via emission of volatiles. Pérez-Flores P; Valencia-Cantero E; Altamirano-Hernández J; Pelagio-Flores R; López-Bucio J; García-Juárez P; Macías-Rodríguez L Protoplasma; 2017 Nov; 254(6):2201-2213. PubMed ID: 28405774 [TBL] [Abstract][Full Text] [Related]
18. Aphid-repellent pheromone E-β-farnesene is generated in transgenic Arabidopsis thaliana over-expressing farnesyl diphosphate synthase2. Bhatia V; Maisnam J; Jain A; Sharma KK; Bhattacharya R Ann Bot; 2015 Mar; 115(4):581-91. PubMed ID: 25538111 [TBL] [Abstract][Full Text] [Related]
19. Aphid-Triggered Changes in Oxidative Damage Markers of Nucleic Acids, Proteins, and Lipids in Maize ( Sytykiewicz H; Łukasik I; Goławska S; Chrzanowski G Int J Mol Sci; 2019 Jul; 20(15):. PubMed ID: 31370193 [TBL] [Abstract][Full Text] [Related]
20. Deciphering the role of NADPH oxidase in complex interactions between maize (Zea mays L.) genotypes and cereal aphids. Sytykiewicz H Biochem Biophys Res Commun; 2016 Jul; 476(2):90-5. PubMed ID: 27178208 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]