These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 36576178)
1. Experimental Study on the Hou X; Liu Y; Chen J; Zheng Z; Liu Y; Zhao X; Sun J; Wang X; Li J; Mei S ACS Biomater Sci Eng; 2023 Jan; 9(1):399-408. PubMed ID: 36576178 [No Abstract] [Full Text] [Related]
2. Structural and mechanical evolution of Tridacna gigas during permineralization. Hou X; Yu H; Hou Z; Li J; Chen Y; Luo L; Chen X; Li W; Yang H; Zeng W J Mech Behav Biomed Mater; 2020 Mar; 103():103609. PubMed ID: 32090936 [TBL] [Abstract][Full Text] [Related]
3. Elevated temperature and carbon dioxide levels alter growth rates and shell composition in the fluted giant clam, Tridacna squamosa. Armstrong EJ; Watson SA; Stillman JH; Calosi P Sci Rep; 2022 Jun; 12(1):11034. PubMed ID: 35773289 [TBL] [Abstract][Full Text] [Related]
4. Illumination enhances the protein abundance of sarcoplasmic reticulum Ca Chan JWJ; Boo MV; Wong WP; Chew SF; Ip YK Comp Biochem Physiol A Mol Integr Physiol; 2021 Jan; 251():110811. PubMed ID: 33011226 [TBL] [Abstract][Full Text] [Related]
5. Architecture of crossed-lamellar bivalve shells: the southern giant clam ( Agbaje OBA; Wirth R; Morales LFG; Shirai K; Kosnik M; Watanabe T; Jacob DE R Soc Open Sci; 2017 Sep; 4(9):170622. PubMed ID: 28989765 [No Abstract] [Full Text] [Related]
6. Study of the microstructure and mechanical properties of white clam shell. Liang Y; Zhao Q; Li X; Zhang Z; Ren L Micron; 2016 Aug; 87():10-7. PubMed ID: 27174697 [TBL] [Abstract][Full Text] [Related]
7. Comparative transcriptome analysis of three gonadal development stages reveals potential genes involved in gametogenesis of the fluted giant clam (Tridacna squamosa). Li J; Zhou Y; Zhou Z; Lin C; Wei J; Qin Y; Xiang Z; Ma H; Zhang Y; Zhang Y; Yu Z BMC Genomics; 2020 Dec; 21(1):872. PubMed ID: 33287701 [TBL] [Abstract][Full Text] [Related]
8. Microstructure characteristics and mechanical properties of Meretrix lusoria shell. Zhao Q; Lin Z; Liang Y; Liu C; Zhang Z; Yu Z; Ren L Microsc Res Tech; 2018 Oct; 81(10):1154-1161. PubMed ID: 30238553 [TBL] [Abstract][Full Text] [Related]
9. Microstructure and crystallographic texture data in modern giant clam shells ( Mills K; Muir DD; Oldroyd A; John EH; Santodomingo N; Johnson KG; Hussein MAS; Sosdian S Data Brief; 2024 Feb; 52():109947. PubMed ID: 38226036 [TBL] [Abstract][Full Text] [Related]
10. Light-enhanced expression of Carbonic Anhydrase 4-like supports shell formation in the fluted giant clam Tridacna squamosa. Chew SF; Koh CZY; Hiong KC; Choo CYL; Wong WP; Neo ML; Ip YK Gene; 2019 Jan; 683():101-112. PubMed ID: 30316924 [TBL] [Abstract][Full Text] [Related]
11. Molecular characterization, cellular localization, and light-enhanced expression of Beta-Na Cao-Pham AH; Hiong KC; Boo MV; Choo CYL; Pang CZ; Wong WP; Neo ML; Chew SF; Ip YK Gene; 2019 May; 695():101-112. PubMed ID: 30763666 [TBL] [Abstract][Full Text] [Related]
12. Carbonic anhydrase 2-like in the giant clam, Ip YK; Koh CZY; Hiong KC; Choo CYL; Boo MV; Wong WP; Neo ML; Chew SF Physiol Rep; 2017 Dec; 5(23):. PubMed ID: 29199178 [TBL] [Abstract][Full Text] [Related]
13. Molecular characterization, immunofluorescent localization, and expression levels of two bicarbonate anion transporters in the whitish mantle of the giant clam, Tridacna squamosa, and the implications for light-enhanced shell formation. Boo MV; Pang CZ; Chew SF; Ip YK Comp Biochem Physiol A Mol Integr Physiol; 2022 Jun; 268():111200. PubMed ID: 35337976 [TBL] [Abstract][Full Text] [Related]
14. Calcium absorption in the fluted giant clam, Tridacna squamosa, may involve a homolog of voltage-gated calcium channel subunit α1 (CACNA1) that has an apical localization and displays light-enhanced protein expression in the ctenidium. Cao-Pham AH; Hiong KC; Boo MV; Choo CYL; Wong WP; Chew SF; Ip YK J Comp Physiol B; 2019 Dec; 189(6):693-706. PubMed ID: 31586259 [TBL] [Abstract][Full Text] [Related]
15. The fluted giant clam (Tridacna squamosa) increases the protein abundance of the host's copper-zinc superoxide dismutase in the colorful outer mantle, but not the whitish inner mantle, during light exposure. Chew SF; Koh CZY; Hiong KC; Boo MV; Wong WP; Ip YK Comp Biochem Physiol A Mol Integr Physiol; 2020 Dec; 250():110791. PubMed ID: 32798693 [TBL] [Abstract][Full Text] [Related]
16. Biomacromolecules within bivalve shells: Is chitin abundant? Agbaje OBA; Ben Shir I; Zax DB; Schmidt A; Jacob DE Acta Biomater; 2018 Oct; 80():176-187. PubMed ID: 30217589 [TBL] [Abstract][Full Text] [Related]
17. Molecular characterization of a novel algal glutamine synthetase (GS) and an algal glutamate synthase (GOGAT) from the colorful outer mantle of the giant clam, Tridacna squamosa, and the putative GS-GOGAT cycle in its symbiotic zooxanthellae. Fam RRS; Hiong KC; Choo CYL; Wong WP; Chew SF; Ip YK Gene; 2018 May; 656():40-52. PubMed ID: 29496556 [TBL] [Abstract][Full Text] [Related]
18. Symbiodiniaceae Dinoflagellates Express Urease in Three Subcellular Compartments and Upregulate its Expression Levels in situ in Three Organs of a Giant Clam (Tridacna squamosa) During Illumination. Ip YK; Teng GCY; Boo MV; Poo JST; Hiong KC; Kim H; Wong WP; Chew SF J Phycol; 2020 Dec; 56(6):1696-1711. PubMed ID: 32725784 [TBL] [Abstract][Full Text] [Related]
19. The inner mantle of the giant clam, Tridacna squamosa, expresses a basolateral Na+/K+-ATPase α-subunit, which displays light-dependent gene and protein expression along the shell-facing epithelium. Boo MV; Hiong KC; Choo CYL; Cao-Pham AH; Wong WP; Chew SF; Ip YK PLoS One; 2017; 12(10):e0186865. PubMed ID: 29049367 [TBL] [Abstract][Full Text] [Related]
20. The complete mitogenome of the giant clam Tridacna squamosa (Heterodonta: Bivalvia: Tridacnidae). Gan HM; Gan HY; Tan MH; Penny SS; Willan RC; Austin CM Mitochondrial DNA A DNA Mapp Seq Anal; 2016 Sep; 27(5):3220-1. PubMed ID: 25648928 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]