These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 36576533)

  • 1. Organophosphorus Compound Formation Through the Oxidation of Reduced Oxidation State Phosphorus Compounds on the Hadean Earth.
    Gull M; Feng T; Bracegirdle J; Abbott-Lyon H; Pasek MA
    J Mol Evol; 2023 Feb; 91(1):60-75. PubMed ID: 36576533
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prebiotic Syntheses of Organophosphorus Compounds from Reduced Source of Phosphorus in Non-Aqueous Solvents.
    Gull M; Feng T; Smith B; Calcul L; Pasek MA
    Life (Basel); 2023 Oct; 13(11):. PubMed ID: 38004274
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prebiotic Chemistry of Phosphite: Mild Thermal Routes to Form Condensed-P Energy Currency Molecules Leading Up to the Formation of Organophosphorus Compounds.
    Gull M; Feng T; Cruz HA; Krishnamurthy R; Pasek MA
    Life (Basel); 2023 Mar; 13(4):. PubMed ID: 37109449
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Stark Contrast to Modern Earth: Phosphate Mineral Transformation and Nucleoside Phosphorylation in an Iron- and Cyanide-Rich Early Earth Scenario.
    Burcar B; Castañeda A; Lago J; Daniel M; Pasek MA; Hud NV; Orlando TM; Menor-Salván C
    Angew Chem Int Ed Engl; 2019 Nov; 58(47):16981-16987. PubMed ID: 31460687
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aqueous corrosion of phosphide minerals from iron meteorites: a highly reactive source of prebiotic phosphorus on the surface of the early Earth.
    Pasek MA; Lauretta DS
    Astrobiology; 2005 Aug; 5(4):515-35. PubMed ID: 16078869
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nucleoside phosphorylation: a feasible step in the prebiotic pathway to RNA.
    Reimann R; Zubay G
    Orig Life Evol Biosph; 1999 May; 29(3):229-47. PubMed ID: 10465714
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Weathering Profiles in Phosphorus-Rich Rocks at Gusev Crater, Mars, Suggest Dissolution of Phosphate Minerals into Potentially Habitable Near-Neutral Waters.
    Adcock CT; Hausrath EM
    Astrobiology; 2015 Dec; 15(12):1060-75. PubMed ID: 26684505
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rethinking early Earth phosphorus geochemistry.
    Pasek MA
    Proc Natl Acad Sci U S A; 2008 Jan; 105(3):853-8. PubMed ID: 18195373
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphorus: a case for mineral-organic reactions in prebiotic chemistry.
    Pasek M; Herschy B; Kee TP
    Orig Life Evol Biosph; 2015 Jun; 45(1-2):207-18. PubMed ID: 25773584
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for reactive reduced phosphorus species in the early Archean ocean.
    Pasek MA; Harnmeijer JP; Buick R; Gull M; Atlas Z
    Proc Natl Acad Sci U S A; 2013 Jun; 110(25):10089-94. PubMed ID: 23733935
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Life on Mars: chemical arguments and clues from Martian meteorites.
    Brack A; Pillinger CT
    Extremophiles; 1998 Aug; 2(3):313-9. PubMed ID: 9783179
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of Organic Compounds on Dissolution of the Phosphate Minerals Chlorapatite, Whitlockite, Merrillite, and Fluorapatite: Implications for Interpreting Past Signatures of Organic Compounds in Rocks, Soils and Sediments.
    Bartlett CL; Hausrath EM; Adcock CT; Huang S; Harrold ZR; Udry A
    Astrobiology; 2018 Dec; 18(12):1543-1558. PubMed ID: 30132684
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphate Activation via Reduced Oxidation State Phosphorus (P). Mild Routes to Condensed-P Energy Currency Molecules.
    Kee TP; Bryant DE; Herschy B; Marriott KE; Cosgrove NE; Pasek MA; Atlas ZD; Cousins CR
    Life (Basel); 2013 Jul; 3(3):386-402. PubMed ID: 25369812
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Results of an Eight-Year Extraction of Phosphorus Minerals within the Seymchan Meteorite.
    Gull M; Feng T; Pasek MA
    Life (Basel); 2022 Oct; 12(10):. PubMed ID: 36295026
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resolving the History of Life on Earth by Seeking Life As We Know It on Mars.
    Carr CE
    Astrobiology; 2022 Jul; 22(7):880-888. PubMed ID: 35467949
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The use of mineral crystals as bio-markers in the search for life on Mars.
    Schwartz DE; Mancinelli RL; Kaneshiro ES
    Adv Space Res; 1992; 12(4):117-9. PubMed ID: 11538129
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact-induced amino acid formation on Hadean Earth and Noachian Mars.
    Takeuchi Y; Furukawa Y; Kobayashi T; Sekine T; Terada N; Kakegawa T
    Sci Rep; 2020 Jun; 10(1):9220. PubMed ID: 32513990
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catalytic/Protective Properties of Martian Minerals and Implications for Possible Origin of Life on Mars.
    Fornaro T; Steele A; Brucato JR
    Life (Basel); 2018 Nov; 8(4):. PubMed ID: 30400661
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conversion of soluble recalcitrant phosphorus to recoverable orthophosphate form using UV/H
    Venkiteshwaran K; Kennedy E; Graeber C; Mallick SP; McNamara PJ; Mayer BK
    Chemosphere; 2021 Sep; 278():130391. PubMed ID: 33838419
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Key scientific questions and key investigations from the first international conference on Martian phyllosilicates.
    Poulet F; Beaty DW; Bibring JP; Bish D; Bishop JL; Noe Dobrea E; Mustard JF; Petit S; Roach LH
    Astrobiology; 2009 Apr; 9(3):257-67. PubMed ID: 19400732
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.