These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 36576565)
1. Surface properties and initial bacterial biofilm growth on 3D-printed oral appliances: a comparative in vitro study. Wuersching SN; Westphal D; Stawarczyk B; Edelhoff D; Kollmuss M Clin Oral Investig; 2023 Jun; 27(6):2667-2677. PubMed ID: 36576565 [TBL] [Abstract][Full Text] [Related]
2. In vitro biocompatibility testing of 3D printing and conventional resins for occlusal devices. Guerrero-Gironés J; López-García S; Pecci-Lloret MR; Pecci-Lloret MP; Rodríguez Lozano FJ; García-Bernal D J Dent; 2022 Aug; 123():104163. PubMed ID: 35577252 [TBL] [Abstract][Full Text] [Related]
3. Comparison of hardness and polishability of various occlusal splint materials. Grymak A; Aarts JM; Ma S; Waddell JN; Choi JJE J Mech Behav Biomed Mater; 2021 Mar; 115():104270. PubMed ID: 33341739 [TBL] [Abstract][Full Text] [Related]
4. Elution behavior of a 3D-printed, milled and conventional resin-based occlusal splint material. Wedekind L; Güth JF; Schweiger J; Kollmuss M; Reichl FX; Edelhoff D; Högg C Dent Mater; 2021 Apr; 37(4):701-710. PubMed ID: 33648744 [TBL] [Abstract][Full Text] [Related]
5. Wear resistance and flexural properties of low force SLA- and DLP-printed splint materials in different printing orientations: An in vitro study. Simeon P; Unkovskiy A; Saadat Sarmadi B; Nicic R; Koch PJ; Beuer F; Schmidt F J Mech Behav Biomed Mater; 2024 Apr; 152():106458. PubMed ID: 38364445 [TBL] [Abstract][Full Text] [Related]
6. Physical, Mechanical, and Anti-Biofilm Formation Properties of CAD-CAM Milled or 3D Printed Denture Base Resins: In Vitro Analysis. Freitas RFCP; Duarte S; Feitosa S; Dutra V; Lin WS; Panariello BHD; Carreiro ADFP J Prosthodont; 2023 Apr; 32(S1):38-44. PubMed ID: 35661475 [TBL] [Abstract][Full Text] [Related]
7. Polishability and wear resistance of splint material for oral appliances produced with conventional, subtractive, and additive manufacturing. Huettig F; Kustermann A; Kuscu E; Geis-Gerstorfer J; Spintzyk S J Mech Behav Biomed Mater; 2017 Nov; 75():175-179. PubMed ID: 28734259 [TBL] [Abstract][Full Text] [Related]
8. Effects of storage and toothbrush simulation on color, gloss, and roughness of CAD/CAM, hand-cast, thermoforming, and 3D-printed splint materials. Hickl V; Strasser T; Schmid A; Rosentritt M Clin Oral Investig; 2022 May; 26(5):4183-4194. PubMed ID: 35119536 [TBL] [Abstract][Full Text] [Related]
9. Candida albicans adhesion on 3D-printed and thermopolymerizable polymethyl methacrylate for removable prostheses. Barros MC; Mazzon RR; Soto AF; Duque TM; Lidani R; Teixeira CS; Sabatini GP; Badaró MM Am J Dent; 2023 Jun; 36(3):130-135. PubMed ID: 37364190 [TBL] [Abstract][Full Text] [Related]
10. Microbial adhesion and biofilm formation by Candida albicans on 3D-printed denture base resins. Silva MDDD; Nunes TSBS; Viotto HEDC; Coelho SRG; Souza RF; Pero AC PLoS One; 2023; 18(10):e0292430. PubMed ID: 37792886 [TBL] [Abstract][Full Text] [Related]
11. Effect of aging and mechanical brushing on surface roughness of 3D printed denture resins: A profilometer and scanning electron microscopy analysis. Alfouzan AF; Alotiabi HM; Labban N; Al-Otaibi HN; Al Taweel SM; AlShehri HA Technol Health Care; 2022; 30(1):161-173. PubMed ID: 34250915 [TBL] [Abstract][Full Text] [Related]
12. A Comparison of the Surface and Mechanical Properties of 3D Printable Denture-Base Resin Material and Conventional Polymethylmethacrylate (PMMA). Al-Dwairi ZN; Al Haj Ebrahim AA; Baba NZ J Prosthodont; 2023 Jan; 32(1):40-48. PubMed ID: 35119168 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of wear behaviour of various occlusal splint materials and manufacturing processes. Grymak A; Waddell JN; Aarts JM; Ma S; Choi JJE J Mech Behav Biomed Mater; 2022 Feb; 126():105053. PubMed ID: 34998068 [TBL] [Abstract][Full Text] [Related]
14. Evaluation of biofilm formation on acrylic resins used to fabricate dental temporary restorations with the use of 3D printing technology. Mazurek-Popczyk J; Nowicki A; Arkusz K; Pałka Ł; Zimoch-Korzycka A; Baldy-Chudzik K BMC Oral Health; 2022 Oct; 22(1):442. PubMed ID: 36229871 [TBL] [Abstract][Full Text] [Related]
15. Two-body wear and surface hardness of occlusal splint materials. Gibreel M; Perea-Lowery L; Vallittu PK; Garoushi S; Lassila L Dent Mater J; 2022 Nov; 41(6):916-922. PubMed ID: 36288940 [TBL] [Abstract][Full Text] [Related]
16. In Vitro Cytotoxic and Inflammatory Response of Gingival Fibroblasts and Oral Mucosal Keratinocytes to 3D Printed Oral Devices. Kollmuss M; Edelhoff D; Schwendicke F; Wuersching SN Polymers (Basel); 2024 May; 16(10):. PubMed ID: 38794529 [TBL] [Abstract][Full Text] [Related]
17. Two-body wear of occlusal splint materials from subtractive computer-aided manufacturing and three-dimensional printing. Schmeiser F; Baumert U; Stawarczyk B Clin Oral Investig; 2022 Sep; 26(9):5857-5866. PubMed ID: 35612645 [TBL] [Abstract][Full Text] [Related]
18. Comparison of the color stability and surface roughness of 3-unit provisional fixed partial dentures fabricated by milling, conventional and different 3D printing fabrication techniques. Ellakany P; Fouda SM; AlGhamdi MA; Aly NM J Dent; 2023 Apr; 131():104458. PubMed ID: 36806621 [TBL] [Abstract][Full Text] [Related]
19. Influence of thermal cycles and disinfection on the roughness, microhardness and color of PETG/TPU and PMMA. Neto CLMM; Bernardi BS; Dekon SFC; Santos DMD; Goiato MC Polim Med; 2023; 53(1):19-24. PubMed ID: 36929643 [TBL] [Abstract][Full Text] [Related]
20. Evaluation of the mechanical properties and degree of conversion of 3D printed splint material. Perea-Lowery L; Gibreel M; Vallittu PK; Lassila L J Mech Behav Biomed Mater; 2021 Mar; 115():104254. PubMed ID: 33333480 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]