These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 36576653)
1. Biohythane: a Potential Biofuel of the Future. Ghosh S; Kar D Appl Biochem Biotechnol; 2024 May; 196(5):2957-2975. PubMed ID: 36576653 [TBL] [Abstract][Full Text] [Related]
2. Biohydrogen production from dairy manures with acidification pretreatment by anaerobic fermentation. Xing Y; Li Z; Fan Y; Hou H Environ Sci Pollut Res Int; 2010 Feb; 17(2):392-9. PubMed ID: 19499259 [TBL] [Abstract][Full Text] [Related]
3. Integrative biohydrogen- and biomethane-producing bioprocesses for comprehensive production of biohythane. Kim HH; Saha S; Hwang JH; Hosen MA; Ahn YT; Park YK; Khan MA; Jeon BH Bioresour Technol; 2022 Dec; 365():128145. PubMed ID: 36257521 [TBL] [Abstract][Full Text] [Related]
4. Continuous production of biohythane from hydrothermal liquefied cornstalk biomass via two-stage high-rate anaerobic reactors. Si BC; Li JM; Zhu ZB; Zhang YH; Lu JW; Shen RX; Zhang C; Xing XH; Liu Z Biotechnol Biofuels; 2016; 9():254. PubMed ID: 27895708 [TBL] [Abstract][Full Text] [Related]
5. Bioprocess engineering for biohythane production from low-grade waste biomass: technical challenges towards scale up. Liu Z; Si B; Li J; He J; Zhang C; Lu Y; Zhang Y; Xing XH Curr Opin Biotechnol; 2018 Apr; 50():25-31. PubMed ID: 28892667 [TBL] [Abstract][Full Text] [Related]
6. Recent developments in biohythane production from household food wastes: A review. Bolzonella D; Battista F; Cavinato C; Gottardo M; Micolucci F; Lyberatos G; Pavan P Bioresour Technol; 2018 Jun; 257():311-319. PubMed ID: 29501273 [TBL] [Abstract][Full Text] [Related]
7. A high-value biohythane production: Feedstocks, reactor configurations, pathways, challenges, technoeconomics and applications. Mozhiarasi V; Natarajan TS; Dhamodharan K Environ Res; 2023 Feb; 219():115094. PubMed ID: 36535394 [TBL] [Abstract][Full Text] [Related]
8. Energy conversion of biomass crops and agroindustrial residues by combined biohydrogen/biomethane system and anaerobic digestion. Corneli E; Dragoni F; Adessi A; De Philippis R; Bonari E; Ragaglini G Bioresour Technol; 2016 Jul; 211():509-18. PubMed ID: 27038259 [TBL] [Abstract][Full Text] [Related]
9. Anaerobic gaseous biofuel production using microalgal biomass - A review. Wirth R; Lakatos G; Böjti T; Maróti G; Bagi Z; Rákhely G; Kovács KL Anaerobe; 2018 Aug; 52():1-8. PubMed ID: 29803739 [TBL] [Abstract][Full Text] [Related]
10. Coproduction of amino acids and biohythane from microalgae via cascaded hydrothermal and anaerobic process. Wu H; Huang S; Wang K; Liu Z Sci Total Environ; 2023 May; 872():162238. PubMed ID: 36804985 [TBL] [Abstract][Full Text] [Related]
11. Archaeal and Bacterial Content in a Two-Stage Anaerobic System for Efficient Energy Production from Agricultural Wastes. Kabaivanova L; Hubenov V; Dimitrova L; Simeonov I; Wang H; Petrova P Molecules; 2022 Feb; 27(5):. PubMed ID: 35268611 [TBL] [Abstract][Full Text] [Related]
12. Renewable biohydrogen production from lignocellulosic biomass using fermentation and integration of systems with other energy generation technologies. Bhatia SK; Jagtap SS; Bedekar AA; Bhatia RK; Rajendran K; Pugazhendhi A; Rao CV; Atabani AE; Kumar G; Yang YH Sci Total Environ; 2021 Apr; 765():144429. PubMed ID: 33385808 [TBL] [Abstract][Full Text] [Related]
13. Boosting dark fermentation with co-cultures of extreme thermophiles for biohythane production from garden waste. Abreu AA; Tavares F; Alves MM; Pereira MA Bioresour Technol; 2016 Nov; 219():132-138. PubMed ID: 27484669 [TBL] [Abstract][Full Text] [Related]
14. Effect of Biohythane Production from Distillery Spent Wash with Addition of Landfill Leachate and Sewage Wastewater. Saranga VK; Kumar PK; Verma K; Bhagawan D; Himabindu V; Narasu ML Appl Biochem Biotechnol; 2020 Jan; 190(1):30-43. PubMed ID: 31297754 [TBL] [Abstract][Full Text] [Related]
15. Biohythane production from marine macroalgae Sargassum sp. coupling dark fermentation and anaerobic digestion. Costa JC; Oliveira JV; Pereira MA; Alves MM; Abreu AA Bioresour Technol; 2015 Aug; 190():251-6. PubMed ID: 25958149 [TBL] [Abstract][Full Text] [Related]
16. Lignocellulosic Biomass: A Sustainable Bioenergy Source for the Future. Fatma S; Hameed A; Noman M; Ahmed T; Shahid M; Tariq M; Sohail I; Tabassum R Protein Pept Lett; 2018; 25(2):148-163. PubMed ID: 29359659 [TBL] [Abstract][Full Text] [Related]
17. States and challenges for high-value biohythane production from waste biomass by dark fermentation technology. Liu Z; Zhang C; Lu Y; Wu X; Wang L; Wang L; Han B; Xing XH Bioresour Technol; 2013 May; 135():292-303. PubMed ID: 23186673 [TBL] [Abstract][Full Text] [Related]
18. Hydrogen production from algal biomass - Advances, challenges and prospects. Show KY; Yan Y; Ling M; Ye G; Li T; Lee DJ Bioresour Technol; 2018 Jun; 257():290-300. PubMed ID: 29506887 [TBL] [Abstract][Full Text] [Related]
19. Upflow anaerobic sludge blanket reactor--a review. Bal AS; Dhagat NN Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675 [TBL] [Abstract][Full Text] [Related]
20. Innovation in biological production and upgrading of methane and hydrogen for use as gaseous transport biofuel. Xia A; Cheng J; Murphy JD Biotechnol Adv; 2016; 34(5):451-472. PubMed ID: 26724182 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]