These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 36577015)

  • 41. Modeling of spatial and temporal variations of ozone-NO
    Du X; Tang W; Cheng M; Zhang Z; Li Y; Li Y; Meng F
    J Environ Sci (China); 2022 Apr; 114():454-464. PubMed ID: 35459508
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Exploration of O
    Xie Y; Cheng C; Wang Z; Wang K; Wang Y; Zhang X; Li X; Ren L; Liu M; Li M
    Sci Total Environ; 2021 Dec; 800():149422. PubMed ID: 34426320
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Assessment of background ozone concentrations in China and implications for using region-specific volatile organic compounds emission abatement to mitigate air pollution.
    Chen W; Guenther AB; Shao M; Yuan B; Jia S; Mao J; Yan F; Krishnan P; Wang X
    Environ Pollut; 2022 Jul; 305():119254. PubMed ID: 35390419
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Air quality and synergistic health effects of ozone and nitrogen oxides in response to China's integrated air quality control policies during 2015-2019.
    Zhang X; Fung JCH; Lau AKH; Hossain MS; Louie PKK; Huang W
    Chemosphere; 2021 Apr; 268():129385. PubMed ID: 33383278
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Atmospheric fate of peroxyacetyl nitrate in suburban Hong Kong and its impact on local ozone pollution.
    Zeng L; Fan GJ; Lyu X; Guo H; Wang JL; Yao D
    Environ Pollut; 2019 Sep; 252(Pt B):1910-1919. PubMed ID: 31227349
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Characterization and sources of volatile organic compounds (VOCs) and their related changes during ozone pollution days in 2016 in Beijing, China.
    Liu Y; Song M; Liu X; Zhang Y; Hui L; Kong L; Zhang Y; Zhang C; Qu Y; An J; Ma D; Tan Q; Feng M
    Environ Pollut; 2020 Feb; 257():113599. PubMed ID: 31796324
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Photochemical ozone pollution in five Chinese megacities in summer 2018.
    Liu X; Guo H; Zeng L; Lyu X; Wang Y; Zeren Y; Yang J; Zhang L; Zhao S; Li J; Zhang G
    Sci Total Environ; 2021 Dec; 801():149603. PubMed ID: 34416603
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Unveiling the dipole synergic effect of biogenic and anthropogenic emissions on ozone concentrations.
    Gao Y; Yan F; Ma M; Ding A; Liao H; Wang S; Wang X; Zhao B; Cai W; Su H; Yao X; Gao H
    Sci Total Environ; 2022 Apr; 818():151722. PubMed ID: 34813804
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Vertical profiles of O
    Chen L; Pang X; Li J; Xing B; An T; Yuan K; Dai S; Wu Z; Wang S; Wang Q; Mao Y; Chen J
    Sci Total Environ; 2022 Nov; 845():157113. PubMed ID: 35787910
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Elucidating Contributions of Anthropogenic Volatile Organic Compounds and Particulate Matter to Ozone Trends over China.
    Li C; Zhu Q; Jin X; Cohen RC
    Environ Sci Technol; 2022 Sep; 56(18):12906-12916. PubMed ID: 36083302
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Evolution of boundary layer ozone in Shijiazhuang, a suburban site on the North China Plain.
    Zhao W; Tang G; Yu H; Yang Y; Wang Y; Wang L; An J; Gao W; Hu B; Cheng M; An X; Li X; Wang Y
    J Environ Sci (China); 2019 Sep; 83():152-160. PubMed ID: 31221378
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Removing the effects of meteorological factors on changes in nitrogen dioxide and ozone concentrations in China from 2013 to 2020.
    Lin C; Lau AKH; Fung JCH; Song Y; Li Y; Tao M; Lu X; Ma J; Lao XQ
    Sci Total Environ; 2021 Nov; 793():148575. PubMed ID: 34175602
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Assessment of regional air quality resulting from emission control in the Pearl River Delta region, southern China.
    Wang N; Lyu XP; Deng XJ; Guo H; Deng T; Li Y; Yin CQ; Li F; Wang SQ
    Sci Total Environ; 2016 Dec; 573():1554-1565. PubMed ID: 27642074
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Analysis of Daily and Diurnal O
    Sellami F; Dammak R; Azri C
    Arch Environ Contam Toxicol; 2023 Jan; 84(1):119-136. PubMed ID: 36403166
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Surface O
    Wang Y; Guo H; Zou S; Lyu X; Ling Z; Cheng H; Zeren Y
    Environ Pollut; 2018 Mar; 234():155-166. PubMed ID: 29175477
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Characteristics of volatile organic compounds, NO
    Deng Y; Li J; Li Y; Wu R; Xie S
    J Environ Sci (China); 2019 Jan; 75():334-345. PubMed ID: 30473299
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Optimization of a volatile organic compound control strategy in an oil industry center in Canada by evaluating ozone and secondary organic aerosol formation potential.
    Xiong Y; Zhou J; Xing Z; Du K
    Environ Res; 2020 Dec; 191():110217. PubMed ID: 32971083
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Characteristics of one-year observation of VOCs, NOx, and O
    Yang Y; Liu X; Zheng J; Tan Q; Feng M; Qu Y; An J; Cheng N
    J Environ Sci (China); 2019 May; 79():297-310. PubMed ID: 30784453
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Inferring Changes in Summertime Surface Ozone-NO
    Jin X; Fiore A; Boersma KF; Smedt I; Valin L
    Environ Sci Technol; 2020 Jun; 54(11):6518-6529. PubMed ID: 32348127
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Ozone and SOA formation potential based on photochemical loss of VOCs during the Beijing summer.
    Zhan J; Feng Z; Liu P; He X; He Z; Chen T; Wang Y; He H; Mu Y; Liu Y
    Environ Pollut; 2021 Sep; 285():117444. PubMed ID: 34090068
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.