BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 36577057)

  • 1. Follistatin regulates the specification of the apical cochlea responsible for low-frequency hearing in mammals.
    Koo HY; Kim MA; Min H; Hwang JY; Prajapati-DiNubila M; Kim KS; Matzuk MM; Park JW; Doetzlhofer A; Kim UK; Bok J
    Proc Natl Acad Sci U S A; 2023 Jan; 120(1):e2213099120. PubMed ID: 36577057
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conserved role of Sonic Hedgehog in tonotopic organization of the avian basilar papilla and mammalian cochlea.
    Son EJ; Ma JH; Ankamreddy H; Shin JO; Choi JY; Wu DK; Bok J
    Proc Natl Acad Sci U S A; 2015 Mar; 112(12):3746-51. PubMed ID: 25775517
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Developmental gene expression profiling along the tonotopic axis of the mouse cochlea.
    Son EJ; Wu L; Yoon H; Kim S; Choi JY; Bok J
    PLoS One; 2012; 7(7):e40735. PubMed ID: 22808246
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Place Coding in the Human Cochlea.
    Walia A; Ortmann AJ; Lefler S; Holden TA; Puram SV; Herzog JA; Buchman CA
    medRxiv; 2023 May; ():. PubMed ID: 37131618
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the Tonotopy of the Low-Frequency Region of the Cochlea.
    Recio-Spinoso A; Dong W; Oghalai JS
    J Neurosci; 2023 Jul; 43(28):5172-5179. PubMed ID: 37225436
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hedgehog signaling regulates prosensory cell properties during the basal-to-apical wave of hair cell differentiation in the mammalian cochlea.
    Tateya T; Imayoshi I; Tateya I; Hamaguchi K; Torii H; Ito J; Kageyama R
    Development; 2013 Sep; 140(18):3848-57. PubMed ID: 23946445
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cochlear tonotopy from proteins to perception.
    Fettiplace R
    Bioessays; 2023 Aug; 45(8):e2300058. PubMed ID: 37329318
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Where hearing starts: the development of the mammalian cochlea.
    Basch ML; Brown RM; Jen HI; Groves AK
    J Anat; 2016 Feb; 228(2):233-54. PubMed ID: 26052920
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Signatures of cochlear processing in neuronal coding of auditory information.
    Marin N; Lobo Cerna F; Barral J
    Mol Cell Neurosci; 2022 May; 120():103732. PubMed ID: 35489636
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical tuning and amplification within the apex of the guinea pig cochlea.
    Recio-Spinoso A; Oghalai JS
    J Physiol; 2017 Jul; 595(13):4549-4561. PubMed ID: 28382742
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D reconstruction of the mouse cochlea from scRNA-seq data suggests morphogen-based principles in apex-to-base specification.
    Wang S; Chakraborty S; Fu Y; Lee MP; Liu J; Waldhaus J
    Dev Cell; 2024 Jun; 59(12):1538-1552.e6. PubMed ID: 38593801
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Developmental changes in the cochlear hair cell mechanotransducer channel and their regulation by transmembrane channel-like proteins.
    Kim KX; Fettiplace R
    J Gen Physiol; 2013 Jan; 141(1):141-8. PubMed ID: 23277480
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correlating Cochlear Morphometrics from Parnell's Mustached Bat (Pteronotus parnellii) with Hearing.
    Girdlestone CD; Ng J; Kössl M; Caplot A; Shadwick RE; Morell M
    J Assoc Res Otolaryngol; 2020 Oct; 21(5):425-444. PubMed ID: 32909111
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Apical hair cells and hearing.
    Prosen CA; Moody DB; Stebbins WC; Smith DW; Sommers MS; Brown JN; Altschuler RA; Hawkins JE
    Hear Res; 1990 Mar; 44(2-3):179-93. PubMed ID: 2329093
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Postnatal development of the hamster cochlea. I. Growth of hair cells and the organ of Corti.
    Kaltenbach JA; Falzarano PR
    J Comp Neurol; 1994 Feb; 340(1):87-97. PubMed ID: 8176004
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent developments in cochlear physiology.
    Lippe WR
    Ear Hear; 1986 Aug; 7(4):233-9. PubMed ID: 3743914
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Static length changes of cochlear outer hair cells can tune low-frequency hearing.
    Ciganović N; Warren RL; Keçeli B; Jacob S; Fridberger A; Reichenbach T
    PLoS Comput Biol; 2018 Jan; 14(1):e1005936. PubMed ID: 29351276
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Follistatin promotes LIN28B-mediated supporting cell reprogramming and hair cell regeneration in the murine cochlea.
    Li XJ; Morgan C; Goff LA; Doetzlhofer A
    Sci Adv; 2022 Feb; 8(6):eabj7651. PubMed ID: 35148175
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hair cell maturation is differentially regulated along the tonotopic axis of the mammalian cochlea.
    Jeng JY; Ceriani F; Hendry A; Johnson SL; Yen P; Simmons DD; Kros CJ; Marcotti W
    J Physiol; 2020 Jan; 598(1):151-170. PubMed ID: 31661723
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential Phase Arrangement of Cellular Clocks along the Tonotopic Axis of the Mouse Cochlea Ex Vivo.
    Park JS; Cederroth CR; Basinou V; Sweetapple L; Buijink R; Lundkvist GB; Michel S; Canlon B
    Curr Biol; 2017 Sep; 27(17):2623-2629.e2. PubMed ID: 28823676
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.