BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 36577057)

  • 21. Primary Neural Degeneration in Noise-Exposed Human Cochleas: Correlations with Outer Hair Cell Loss and Word-Discrimination Scores.
    Wu PZ; O'Malley JT; de Gruttola V; Liberman MC
    J Neurosci; 2021 May; 41(20):4439-4447. PubMed ID: 33883202
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cochlear outer hair cell electromotility enhances organ of Corti motion on a cycle-by-cycle basis at high frequencies in vivo.
    Dewey JB; Altoè A; Shera CA; Applegate BE; Oghalai JS
    Proc Natl Acad Sci U S A; 2021 Oct; 118(43):. PubMed ID: 34686590
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hedgehog signaling regulates sensory cell formation and auditory function in mice and humans.
    Driver EC; Pryor SP; Hill P; Turner J; Rüther U; Biesecker LG; Griffith AJ; Kelley MW
    J Neurosci; 2008 Jul; 28(29):7350-8. PubMed ID: 18632939
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sufu- and Spop-mediated regulation of Gli2 is essential for the control of mammalian cochlear hair cell differentiation.
    Qin T; Ho CC; Wang B; Hui CC; Sham MH
    Proc Natl Acad Sci U S A; 2022 Oct; 119(43):e2206571119. PubMed ID: 36252002
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Relationships between neuronal birthdates and tonotopic positions in the mouse cochlear nucleus.
    Shepard AR; Scheffel JL; Yu WM
    J Comp Neurol; 2019 Apr; 527(5):999-1011. PubMed ID: 30414323
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Developmental alterations in the frequency map of the mammalian cochlea.
    Echteler SM; Arjmand E; Dallos P
    Nature; 1989 Sep; 341(6238):147-9. PubMed ID: 2779652
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Unified cochlear model for low- and high-frequency mammalian hearing.
    Sasmal A; Grosh K
    Proc Natl Acad Sci U S A; 2019 Jul; 116(28):13983-13988. PubMed ID: 31221750
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Unusual mechanical processing of sounds at the apex of the Guinea pig cochlea.
    Recio-Spinoso A; Oghalai JS
    Hear Res; 2018 Dec; 370():84-93. PubMed ID: 30342361
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Auditory ganglion source of Sonic hedgehog regulates timing of cell cycle exit and differentiation of mammalian cochlear hair cells.
    Bok J; Zenczak C; Hwang CH; Wu DK
    Proc Natl Acad Sci U S A; 2013 Aug; 110(34):13869-74. PubMed ID: 23918393
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Frequency selectivity of the human cochlea: Suppression tuning of spontaneous otoacoustic emissions.
    Manley GA; van Dijk P
    Hear Res; 2016 Jun; 336():53-62. PubMed ID: 27139323
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Time-domain analysis of a three-dimensional numerical model of the human spiral cochlea at medium intensity.
    Yao W; Zhao Z; Wang J; Duan M
    Comput Biol Med; 2021 Sep; 136():104756. PubMed ID: 34388464
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Coupling between Ca
    Johnson SL; Olt J; Cho S; von Gersdorff H; Marcotti W
    J Neurosci; 2017 Mar; 37(9):2471-2484. PubMed ID: 28154149
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Micro-architectures of the osseous spiral laminae and spiral limbus in the mouse cochlea: a scanning electron microscopic study on the morphological basis of the auditory mechanics.
    Kücük B
    Hokkaido Igaku Zasshi; 1990 Nov; 65(6):612-27. PubMed ID: 2265821
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cochlear apical morphology in toothed whales: Using the pairing hair cell-Deiters' cell as a marker to detect lesions.
    Morell M; IJsseldijk LL; Piscitelli-Doshkov M; Ostertag S; Estrade V; Haulena M; Doshkov P; Bourien J; Raverty SA; Siebert U; Puel JL; Shadwick RE
    Anat Rec (Hoboken); 2022 Mar; 305(3):622-642. PubMed ID: 34096183
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dynamic expression pattern of Sonic hedgehog in developing cochlear spiral ganglion neurons.
    Liu Z; Owen T; Zhang L; Zuo J
    Dev Dyn; 2010 Jun; 239(6):1674-83. PubMed ID: 20503364
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Novel Frequency Selectivity Approach Based on Travelling Wave Propagation in Mechanoluminescence Basilar Membrane for Artificial Cochlea.
    Kim Y; Kim JS; Kim GW
    Sci Rep; 2018 Aug; 8(1):12023. PubMed ID: 30104692
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Sonic Hedgehog signaling pathway and regulation of inner ear development].
    Chen ZQ; Han XH; Cao X
    Yi Chuan; 2013 Sep; 35(9):1058-64. PubMed ID: 24400478
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Organ of Corti vibration within the intact gerbil cochlea measured by volumetric optical coherence tomography and vibrometry.
    Dong W; Xia A; Raphael PD; Puria S; Applegate B; Oghalai JS
    J Neurophysiol; 2018 Dec; 120(6):2847-2857. PubMed ID: 30281386
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The influence of cochlear shape on low-frequency hearing.
    Manoussaki D; Chadwick RS; Ketten DR; Arruda J; Dimitriadis EK; O'Malley JT
    Proc Natl Acad Sci U S A; 2008 Apr; 105(16):6162-6. PubMed ID: 18413615
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development of tonotopy in the auditory periphery.
    Mann ZF; Kelley MW
    Hear Res; 2011 Jun; 276(1-2):2-15. PubMed ID: 21276841
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.