BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 36577057)

  • 41. Amplification and Suppression of Traveling Waves along the Mouse Organ of Corti: Evidence for Spatial Variation in the Longitudinal Coupling of Outer Hair Cell-Generated Forces.
    Dewey JB; Applegate BE; Oghalai JS
    J Neurosci; 2019 Mar; 39(10):1805-1816. PubMed ID: 30651330
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The Notch Ligand Jagged1 Is Required for the Formation, Maintenance, and Survival of Hensen's Cells in the Mouse Cochlea.
    Chrysostomou E; Zhou L; Darcy YL; Graves KA; Doetzlhofer A; Cox BC
    J Neurosci; 2020 Dec; 40(49):9401-9413. PubMed ID: 33127852
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Role of inner and outer hair cells in mechanical frequency selectivity of the cochlea.
    Strelioff D; Flock A; Minser KE
    Hear Res; 1985 May; 18(2):169-75. PubMed ID: 4044418
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Prestin's role in cochlear frequency tuning and transmission of mechanical responses to neural excitation.
    Mellado Lagarde MM; Drexl M; Lukashkin AN; Zuo J; Russell IJ
    Curr Biol; 2008 Feb; 18(3):200-2. PubMed ID: 18221877
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Lack of Bdnf and TrkB signalling in the postnatal cochlea leads to a spatial reshaping of innervation along the tonotopic axis and hearing loss.
    Schimmang T; Tan J; Müller M; Zimmermann U; Rohbock K; Kôpschall I; Limberger A; Minichiello L; Knipper M
    Development; 2003 Oct; 130(19):4741-50. PubMed ID: 12925599
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Mechanical preprocessing of amplitude-modulated sounds in the apex of the cochlea.
    Cooper NP
    ORL J Otorhinolaryngol Relat Spec; 2006; 68(6):353-8. PubMed ID: 17065829
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Strengthening of the Efferent Olivocochlear System Leads to Synaptic Dysfunction and Tonotopy Disruption of a Central Auditory Nucleus.
    Di Guilmi MN; Boero LE; Castagna VC; Rodríguez-Contreras A; Wedemeyer C; Gómez-Casati ME; Elgoyhen AB
    J Neurosci; 2019 Sep; 39(36):7037-7048. PubMed ID: 31217330
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Frequency representation and spiral ganglion cell density in the cochlea of the gerbil Pachyuromys duprasi.
    Müller M; Ott H; Bruns V
    Hear Res; 1991 Nov; 56(1-2):191-6. PubMed ID: 1769913
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Dysregulation of sonic hedgehog signaling causes hearing loss in ciliopathy mouse models.
    Moon KH; Ma JH; Min H; Koo H; Kim H; Ko HW; Bok J
    Elife; 2020 Dec; 9():. PubMed ID: 33382037
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Structure and function of the cochlea in the African mole rat (Cryptomys hottentotus): evidence for a low frequency acoustic fovea.
    Müller M; Laube B; Burda H; Bruns V
    J Comp Physiol A; 1992 Nov; 171(4):469-76. PubMed ID: 1469665
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A search for factors specifying tonotopy implicates DNER in hair-cell development in the chick's cochlea.
    Kowalik L; Hudspeth AJ
    Dev Biol; 2011 Jun; 354(2):221-31. PubMed ID: 21497156
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Single-cell transcriptomic profiling of the mouse cochlea: An atlas for targeted therapies.
    Jean P; Wong Jun Tai F; Singh-Estivalet A; Lelli A; Scandola C; Megharba S; Schmutz S; Roux S; Mechaussier S; Sudres M; Mouly E; Heritier AV; Bonnet C; Mallet A; Novault S; Libri V; Petit C; Michalski N
    Proc Natl Acad Sci U S A; 2023 Jun; 120(26):e2221744120. PubMed ID: 37339214
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Mismatch of structural and functional tonotopy for natural sounds in the auditory midbrain.
    Portfors CV; Roberts PD
    Neuroscience; 2014 Jan; 258():192-203. PubMed ID: 24252321
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The responses of inner and outer hair cells in the basal turn of the guinea-pig cochlea and in the mouse cochlea grown in vitro.
    Russell IJ; Cody AR; Richardson GP
    Hear Res; 1986; 22():199-216. PubMed ID: 3733540
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Reticular lamina and basilar membrane vibrations in living mouse cochleae.
    Ren T; He W; Kemp D
    Proc Natl Acad Sci U S A; 2016 Aug; 113(35):9910-5. PubMed ID: 27516544
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The crosstalk between the Notch, Wnt, and SHH signaling pathways in regulating the proliferation and regeneration of sensory progenitor cells in the mouse cochlea.
    Wu J; Li W; Guo L; Zhao L; Sun S; Li H
    Cell Tissue Res; 2021 Nov; 386(2):281-296. PubMed ID: 34223978
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Low-frequency detection and discrimination following apical hair cell destruction.
    Prosen CA; Moody DB
    Hear Res; 1991 Dec; 57(1):142-52. PubMed ID: 1774205
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Best frequencies and temporal delays are similar across the low-frequency regions of the guinea pig cochlea.
    Burwood G; Hakizimana P; Nuttall AL; Fridberger A
    Sci Adv; 2022 Sep; 8(38):eabq2773. PubMed ID: 36149949
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The physics of hearing: fluid mechanics and the active process of the inner ear.
    Reichenbach T; Hudspeth AJ
    Rep Prog Phys; 2014 Jul; 77(7):076601. PubMed ID: 25006839
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Auditory amplification: outer hair cells pres the issue.
    Géléoc GS; Holt JR
    Trends Neurosci; 2003 Mar; 26(3):115-7. PubMed ID: 12591210
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.