These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 36577140)
1. The Nature of Interfacial Catalysis over Pt/NiAl Wang X; Li D; Gao Z; Guo Y; Zhang H; Ma D J Am Chem Soc; 2023 Jan; 145(2):905-918. PubMed ID: 36577140 [TBL] [Abstract][Full Text] [Related]
2. In situ ATR-IR spectroscopic and reaction kinetics studies of water-gas shift and methanol reforming on Pt/Al2O3 catalysts in vapor and liquid phases. He R; Davda RR; Dumesic JA J Phys Chem B; 2005 Feb; 109(7):2810-20. PubMed ID: 16851292 [TBL] [Abstract][Full Text] [Related]
3. Reactivity of chemisorbed oxygen atoms and their catalytic consequences during CH4-O2 catalysis on supported Pt clusters. Chin YH; Buda C; Neurock M; Iglesia E J Am Chem Soc; 2011 Oct; 133(40):15958-78. PubMed ID: 21919447 [TBL] [Abstract][Full Text] [Related]
4. Molybdenum Carbide: Controlling the Geometric and Electronic Structure of Noble Metals for the Activation of O-H and C-H Bonds. Deng Y; Ge Y; Xu M; Yu Q; Xiao D; Yao S; Ma D Acc Chem Res; 2019 Dec; 52(12):3372-3383. PubMed ID: 31411856 [TBL] [Abstract][Full Text] [Related]
5. Single-Atom Alloys as a Reductionist Approach to the Rational Design of Heterogeneous Catalysts. Giannakakis G; Flytzani-Stephanopoulos M; Sykes ECH Acc Chem Res; 2019 Jan; 52(1):237-247. PubMed ID: 30540456 [TBL] [Abstract][Full Text] [Related]
6. Spatial Confinement of Pt Nanoparticles in Carbon Nanotubes for Efficient and Selective H Jin X; Yan J; Liu X; Zhang Q; Huang Y; Wang Y; Wang C; Wu Y Adv Sci (Weinh); 2024 Mar; 11(12):e2306893. PubMed ID: 38225898 [TBL] [Abstract][Full Text] [Related]
7. Insights into the Mechanism of Methanol Steam Reforming Tandem Reaction over CeO Chen L; Qi Z; Peng X; Chen JL; Pao CW; Zhang X; Dun C; Young M; Prendergast D; Urban JJ; Guo J; Somorjai GA; Su J J Am Chem Soc; 2021 Aug; 143(31):12074-12081. PubMed ID: 34328729 [TBL] [Abstract][Full Text] [Related]
8. A comparative theoretical study for the methanol dehydrogenation to CO over Pt3 and PtAu2 clusters. Zhong W; Liu Y; Zhang D J Mol Model; 2012 Jul; 18(7):3051-60. PubMed ID: 22160734 [TBL] [Abstract][Full Text] [Related]
9. Improved Low-Temperature Hydrogen Production from Aqueous Methanol Based on Synergism between Cationic Pt and Interfacial Basic LaO Mori K; Shimoji Y; Yamashita H ChemSusChem; 2023 Aug; 16(16):e202300283. PubMed ID: 37183559 [TBL] [Abstract][Full Text] [Related]
10. Efficient Low-temperature Hydrogen Production by Electrochemical-assisted Methanol Steam Reforming. Liu Q; Du S; Liu T; Gong L; Wu Y; Lin J; Yang P; Huang G; Li M; Wu Y; Zhou Y; Li Y; Tao L; Wang S Angew Chem Int Ed Engl; 2024 Feb; 63(7):e202315157. PubMed ID: 38143245 [TBL] [Abstract][Full Text] [Related]
11. Low-Temperature Methanol-Water Reforming Over Alcohol Dehydrogenase and Immobilized Ruthenium Complex. Shen Y; Wang L; Xu Z; Ning F; Zhan Y; Bai C; Zhou X ChemSusChem; 2021 Sep; 14(18):3867-3875. PubMed ID: 34310047 [TBL] [Abstract][Full Text] [Related]
12. Insights into catalytic oxidation at the Au/TiO(2) dual perimeter sites. Green IX; Tang W; Neurock M; Yates JT Acc Chem Res; 2014 Mar; 47(3):805-15. PubMed ID: 24372536 [TBL] [Abstract][Full Text] [Related]
13. Structural requirements and reaction pathways in dimethyl ether combustion catalyzed by supported Pt clusters. Ishikawa A; Neurock M; Iglesia E J Am Chem Soc; 2007 Oct; 129(43):13201-12. PubMed ID: 17915866 [TBL] [Abstract][Full Text] [Related]
14. Catalysts for Hydrogen Generation via Oxy-Steam Reforming of Methanol Process. Mosińska M; Szynkowska-Jóźwik MI; Mierczyński P Materials (Basel); 2020 Dec; 13(24):. PubMed ID: 33302526 [TBL] [Abstract][Full Text] [Related]
15. Producing hydrogen by catalytic steam reforming of methanol using non-noble metal catalysts. Deng Y; Li S; Appels L; Dewil R; Zhang H; Baeyens J; Mikulcic H J Environ Manage; 2022 Nov; 321():116019. PubMed ID: 36029634 [TBL] [Abstract][Full Text] [Related]
16. Insights into Interfacial Synergistic Catalysis over Ni@TiO Xu M; Yao S; Rao D; Niu Y; Liu N; Peng M; Zhai P; Man Y; Zheng L; Wang B; Zhang B; Ma D; Wei M J Am Chem Soc; 2018 Sep; 140(36):11241-11251. PubMed ID: 30016862 [TBL] [Abstract][Full Text] [Related]
17. Atomically Dispersed Ni/α-MoC Catalyst for Hydrogen Production from Methanol/Water. Lin L; Yu Q; Peng M; Li A; Yao S; Tian S; Liu X; Li A; Jiang Z; Gao R; Han X; Li YW; Wen XD; Zhou W; Ma D J Am Chem Soc; 2021 Jan; 143(1):309-317. PubMed ID: 33369393 [TBL] [Abstract][Full Text] [Related]
18. Catalytic Effect of Hydrogen Bond on Oxhydryl Dehydrogenation in Methanol Steam Reforming on Ni(111). Ke C; Lin Z Molecules; 2020 Mar; 25(7):. PubMed ID: 32230888 [TBL] [Abstract][Full Text] [Related]
19. Metalloporphyrins as Catalytic Models for Studying Hydrogen and Oxygen Evolution and Oxygen Reduction Reactions. Li X; Lei H; Xie L; Wang N; Zhang W; Cao R Acc Chem Res; 2022 Mar; 55(6):878-892. PubMed ID: 35192330 [TBL] [Abstract][Full Text] [Related]
20. Liu C; Lu B; Ariga-Miwa H; Ogura S; Ozawa T; Fukutani K; Gao M; Hasegawa JY; Shimizu KI; Asakura K; Takakusagi S J Am Chem Soc; 2023 Sep; 145(36):19953-19960. PubMed ID: 37584454 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]