BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 36577244)

  • 1. Impact of an exclusive narrow automated vehicle lane on adjacent lane driver behavior.
    Sohrabi A; Machiani SG; Jahangiri A
    Accid Anal Prev; 2023 Mar; 181():106931. PubMed ID: 36577244
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of assignments of dedicated automated vehicle lanes and inter-vehicle distances of automated vehicle platoons on car-following performance of nearby manual vehicle drivers.
    Chen F; Lu G; Tan H; Liu M; Wan H
    Accid Anal Prev; 2022 Nov; 177():106826. PubMed ID: 36081223
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of lane width, shoulder width, and road cross-sectional reallocation on drivers' behavioral adaptations.
    Mecheri S; Rosey F; Lobjois R
    Accid Anal Prev; 2017 Jul; 104():65-73. PubMed ID: 28486150
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of traffic density on drivers' lane change and overtaking maneuvers in freeway situation-A driving simulator-based study.
    Yang L; Li X; Guan W; Zhang HM; Fan L
    Traffic Inj Prev; 2018; 19(6):594-600. PubMed ID: 29757689
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling the influence of 0.03%, 0.05% and 0.08% blood alcohol concentrations on lane positioning and steering control of Indian drivers.
    Yadav AK; Velaga NR
    Traffic Inj Prev; 2021; 22(5):343-348. PubMed ID: 33979247
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and evaluation of cooperative human-machine interface for changing lanes in conditional driving automation.
    Muslim H; Kiu Leung C; Itoh M
    Accid Anal Prev; 2022 Sep; 174():106719. PubMed ID: 35660872
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of curbs on driver behaviors in four-lane rural highways--A driving simulator based study.
    Yang Q; Overton R; Han LD; Yan X; Richards SH
    Accid Anal Prev; 2013 Jan; 50():1289-97. PubMed ID: 23084096
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integration of automated vehicles in mixed traffic: Evaluating changes in performance of following human-driven vehicles.
    Mahdinia I; Mohammadnazar A; Arvin R; Khattak AJ
    Accid Anal Prev; 2021 Mar; 152():106006. PubMed ID: 33556655
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Operational design domain of automated vehicles at freeway entrance terminals.
    Ye X; Wang X
    Accid Anal Prev; 2022 Sep; 174():106776. PubMed ID: 35870304
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Driver-Automated Vehicle Interaction in Mixed Traffic: Types of Interaction and Drivers' Driving Styles.
    Ma Z; Zhang Y
    Hum Factors; 2024 Feb; 66(2):544-561. PubMed ID: 35469464
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction driver-bicyclist on rural roads: Effects of cross-sections and road geometric elements.
    Bella F; Silvestri M
    Accid Anal Prev; 2017 May; 102():191-201. PubMed ID: 28319757
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of gender, occupation and experience on behavior while driving on a freeway deceleration lane based on field operational test data.
    Lyu N; Cao Y; Wu C; Xu J; Xie L
    Accid Anal Prev; 2018 Dec; 121():82-93. PubMed ID: 30237046
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An evaluation of a lane support system for bus rapid transit on narrow shoulders and the relation to bus driver mental workload.
    Ward NJ; Shankwitz C; Gorgestani A; Donath M; De Waard D; Boer ER
    Ergonomics; 2006 Jul; 49(9):832-59. PubMed ID: 16801231
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analyzing the effect of fog weather conditions on driver lane-keeping performance using the SHRP2 naturalistic driving study data.
    Das A; Ghasemzadeh A; Ahmed MM
    J Safety Res; 2019 Feb; 68():71-80. PubMed ID: 30876522
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation into passing behavior at passing zones to validate and extend the use of driving simulators in two-lane roads safety analysis.
    Karimi A; Bassani M; Boroujerdian AM; Catani L
    Accid Anal Prev; 2020 May; 139():105487. PubMed ID: 32135336
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Driver Behavior During Overtaking Maneuvers from the 100-Car Naturalistic Driving Study.
    Chen R; Kusano KD; Gabler HC
    Traffic Inj Prev; 2015; 16 Suppl 2():S176-81. PubMed ID: 26436229
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of texting on driving performance in a driving simulator: the influence of driver age.
    Rumschlag G; Palumbo T; Martin A; Head D; George R; Commissaris RL
    Accid Anal Prev; 2015 Jan; 74():145-9. PubMed ID: 25463954
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding take-over performance of high crash risk drivers during conditionally automated driving.
    Lin Q; Li S; Ma X; Lu G
    Accid Anal Prev; 2020 Aug; 143():105543. PubMed ID: 32485431
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In-vehicle displays to support driver anticipation of traffic conflicts in automated vehicles.
    He D; Kanaan D; Donmez B
    Accid Anal Prev; 2021 Jan; 149():105842. PubMed ID: 33157393
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of chevron alignment signs on driver performance on horizontal curves with different roadway geometries.
    Zhao X; Wu Y; Rong J; Ma J
    Accid Anal Prev; 2015 Feb; 75():226-35. PubMed ID: 25525973
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.