These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
257 related articles for article (PubMed ID: 36577304)
21. Imaging the position-dependent 3D force on microbeads subjected to acoustic radiation forces and streaming. Lamprecht A; Lakämper S; Baasch T; Schaap IA; Dual J Lab Chip; 2016 Jul; 16(14):2682-93. PubMed ID: 27302661 [TBL] [Abstract][Full Text] [Related]
22. 3D measurement and simulation of surface acoustic wave driven fluid motion: a comparison. Kiebert F; Wege S; Massing J; König J; Cierpka C; Weser R; Schmidt H Lab Chip; 2017 Jun; 17(12):2104-2114. PubMed ID: 28540945 [TBL] [Abstract][Full Text] [Related]
23. Continuous Enrichment and Separation of Nanoparticles via Acoustic Streaming. Yang Y; He M; Jin K; Chen X; Duan X Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():2231-2234. PubMed ID: 33018451 [TBL] [Abstract][Full Text] [Related]
24. Enhanced Detection in Droplet Microfluidics by Acoustic Vortex Modulation of Particle Rings and Particle Clusters via Asymmetric Propagation of Surface Acoustic Waves. Liu Y; Ji M; Yu N; Zhao C; Xue G; Fu W; Qiao X; Zhang Y; Chou X; Geng W Biosensors (Basel); 2022 Jun; 12(6):. PubMed ID: 35735547 [TBL] [Abstract][Full Text] [Related]
25. Blood platelet enrichment in mass-producible surface acoustic wave (SAW) driven microfluidic chips. Richard C; Fakhfouri A; Colditz M; Striggow F; Kronstein-Wiedemann R; Tonn T; Medina-Sánchez M; Schmidt OG; Gemming T; Winkler A Lab Chip; 2019 Dec; 19(24):4043-4051. PubMed ID: 31723953 [TBL] [Abstract][Full Text] [Related]
26. Flow induced by acoustic streaming on surface-acoustic-wave devices and its application in biofouling removal: a computational study and comparisons to experiment. Sankaranarayanan SK; Cular S; Bhethanabotla VR; Joseph B Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jun; 77(6 Pt 2):066308. PubMed ID: 18643372 [TBL] [Abstract][Full Text] [Related]
27. Additive manufacturing of three-dimensional (3D) microfluidic-based microelectromechanical systems (MEMS) for acoustofluidic applications. Cesewski E; Haring AP; Tong Y; Singh M; Thakur R; Laheri S; Read KA; Powell MD; Oestreich KJ; Johnson BN Lab Chip; 2018 Jul; 18(14):2087-2098. PubMed ID: 29897358 [TBL] [Abstract][Full Text] [Related]
28. A discussion about the velocity distribution commonly used as the boundary condition in surface acoustic wave numerical simulations. Jazini Dorcheh F; Ghassemi M Biomed Microdevices; 2023 Oct; 25(4):42. PubMed ID: 37874402 [TBL] [Abstract][Full Text] [Related]
29. Reduced acoustic resonator dimensions improve focusing efficiency of bacteria and submicron particles. Ugawa M; Lee H; Baasch T; Lee M; Kim S; Jeong O; Choi YH; Sohn D; Laurell T; Ota S; Lee S Analyst; 2022 Jan; 147(2):274-281. PubMed ID: 34889326 [TBL] [Abstract][Full Text] [Related]
30. Continuous Particle Aggregation and Separation in Acoustofluidic Microchannels Driven by Standing Lamb Waves. Hsu JC; Chang CY Micromachines (Basel); 2022 Dec; 13(12):. PubMed ID: 36557473 [TBL] [Abstract][Full Text] [Related]
31. A disposable acoustofluidic chip for nano/microparticle separation using unidirectional acoustic transducers. Zhao S; Wu M; Yang S; Wu Y; Gu Y; Chen C; Ye J; Xie Z; Tian Z; Bachman H; Huang PH; Xia J; Zhang P; Zhang H; Huang TJ Lab Chip; 2020 Apr; 20(7):1298-1308. PubMed ID: 32195522 [TBL] [Abstract][Full Text] [Related]
32. Concentration of Microparticles Using Flexural Acoustic Wave in Sessile Droplets. Peng T; Li L; Zhou M; Jiang F Sensors (Basel); 2022 Feb; 22(3):. PubMed ID: 35162014 [TBL] [Abstract][Full Text] [Related]
33. Numerical simulation of 3D boundary-driven acoustic streaming in microfluidic devices. Lei J; Hill M; Glynne-Jones P Lab Chip; 2014 Feb; 14(3):532-41. PubMed ID: 24284651 [TBL] [Abstract][Full Text] [Related]
34. Diversity of 2D Acoustofluidic Fields in an Ultrasonic Cavity Generated by Multiple Vibration Sources. Tang Q; Zhou S; Huang L; Chen Z Micromachines (Basel); 2019 Nov; 10(12):. PubMed ID: 31766721 [TBL] [Abstract][Full Text] [Related]
35. Inertia-Acoustophoresis Hybrid Microfluidic Device for Rapid and Efficient Cell Separation. Kim U; Oh B; Ahn J; Lee S; Cho Y Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808206 [TBL] [Abstract][Full Text] [Related]
36. Fabrication of Surface Acoustic Wave Devices on Lithium Niobate. Mei J; Zhang N; Friend J J Vis Exp; 2020 Jun; (160):. PubMed ID: 32628169 [TBL] [Abstract][Full Text] [Related]
37. Acoustofluidic precise manipulation: Recent advances in applications for micro/nano bioparticles. Li W; Yao Z; Ma T; Ye Z; He K; Wang L; Wang H; Fu Y; Xu X Adv Colloid Interface Sci; 2024 Oct; 332():103276. PubMed ID: 39146580 [TBL] [Abstract][Full Text] [Related]
38. Forthcoming Lab on a Chip tutorial series on acoustofluidics: acoustofluidics-exploiting ultrasonic standing wave forces and acoustic streaming in microfluidic systems for cell and particle manipulation. Bruus H; Dual J; Hawkes J; Hill M; Laurell T; Nilsson J; Radel S; Sadhal S; Wiklund M Lab Chip; 2011 Nov; 11(21):3579-80. PubMed ID: 21952310 [No Abstract] [Full Text] [Related]
39. Investigation into the Effect of Acoustic Radiation Force and Acoustic Streaming on Particle Patterning in Acoustic Standing Wave Fields. Liu S; Yang Y; Ni Z; Guo X; Luo L; Tu J; Zhang D; Zhang AJ Sensors (Basel); 2017 Jul; 17(7):. PubMed ID: 28753955 [TBL] [Abstract][Full Text] [Related]
40. Emerging on-chip surface acoustic wave technology for small biomaterials manipulation and characterization. Gao Y; Fajrial AK; Yang T; Ding X Biomater Sci; 2021 Mar; 9(5):1574-1582. PubMed ID: 33283794 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]