These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 36577345)

  • 1. Understanding the microfluidic generation of double emulsion droplets with alginate shell.
    Huang L; Wu K; Cai S; Yu H; Liu D; Yuan W; Chen X; Ji H
    Colloids Surf B Biointerfaces; 2023 Feb; 222():113114. PubMed ID: 36577345
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamics of double emulsion break-up in three phase glass capillary microfluidic devices.
    Nabavi SA; Gu S; Vladisavljević GT; Ekanem EE
    J Colloid Interface Sci; 2015 Jul; 450():279-287. PubMed ID: 25828435
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monodisperse alginate microcapsules with oil core generated from a microfluidic device.
    Ren PW; Ju XJ; Xie R; Chu LY
    J Colloid Interface Sci; 2010 Mar; 343(1):392-5. PubMed ID: 19963224
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction and control of drop formation modes in microfluidic generation of double emulsions by single-step emulsification.
    Nabavi SA; Vladisavljević GT; Bandulasena MV; Arjmandi-Tash O; Manović V
    J Colloid Interface Sci; 2017 Nov; 505():315-324. PubMed ID: 28601740
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controllable preparation of monodisperse alginate microcapsules with oil cores.
    Mou CL; Deng QZ; Hu JX; Wang LY; Deng HB; Xiao G; Zhan Y
    J Colloid Interface Sci; 2020 Jun; 569():307-319. PubMed ID: 32126344
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel glass capillary microfluidic devices for the flexible and simple production of multi-cored double emulsions.
    Leister N; Vladisavljević GT; Karbstein HP
    J Colloid Interface Sci; 2022 Apr; 611():451-461. PubMed ID: 34968964
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monodisperse Alginate Microcapsules with Spatially Confined Bioactive Molecules via Microfluid-Generated W/W/O Emulsions.
    Sun H; Zheng H; Tang Q; Dong Y; Qu F; Wang Y; Yang G; Meng T
    ACS Appl Mater Interfaces; 2019 Oct; 11(40):37313-37321. PubMed ID: 31517474
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation of monodisperse calcium alginate microcapsules via internal gelation in microfluidic-generated double emulsions.
    Liu L; Wu F; Ju XJ; Xie R; Wang W; Niu CH; Chu LY
    J Colloid Interface Sci; 2013 Aug; 404():85-90. PubMed ID: 23711658
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Emulsion droplet formation in coflowing liquid streams.
    Chen Y; Wu L; Zhang C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):013002. PubMed ID: 23410421
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A double-step emulsification device for direct generation of double emulsions.
    Lai YK; Opalski AS; Garstecki P; Derzsi L; Guzowski J
    Soft Matter; 2022 Aug; 18(33):6157-6166. PubMed ID: 35770691
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generation of monodisperse alginate microbeads and in situ encapsulation of cell in microfluidic device.
    Choi CH; Jung JH; Rhee YW; Kim DP; Shim SE; Lee CS
    Biomed Microdevices; 2007 Dec; 9(6):855-62. PubMed ID: 17578667
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generation of core-shell microcapsules with three-dimensional focusing device for efficient formation of cell spheroid.
    Kim C; Chung S; Kim YE; Lee KS; Lee SH; Oh KW; Kang JY
    Lab Chip; 2011 Jan; 11(2):246-52. PubMed ID: 20967338
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent progress in the synthesis of all-aqueous two-phase droplets using microfluidic approaches.
    Daradmare S; Lee CS
    Colloids Surf B Biointerfaces; 2022 Nov; 219():112795. PubMed ID: 36049253
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A dual-core double emulsion platform for osmolarity-controlled microreactor triggered by coalescence of encapsulated droplets.
    Guan X; Hou L; Ren Y; Deng X; Lang Q; Jia Y; Hu Q; Tao Y; Liu J; Jiang H
    Biomicrofluidics; 2016 May; 10(3):034111. PubMed ID: 27279935
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell encapsulation in core-shell microcapsules through coaxial electrospinning system and horseradish peroxidase-catalyzed crosslinking.
    Khanmohammadi M; Zolfagharzadeh V; Bagher Z; Soltani H; Ai J
    Biomed Phys Eng Express; 2020 Jan; 6(1):015022. PubMed ID: 33438610
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A microfluidic chip for formation and collection of emulsion droplets utilizing active pneumatic micro-choppers and micro-switches.
    Lai CW; Lin YH; Lee GB
    Biomed Microdevices; 2008 Oct; 10(5):749-56. PubMed ID: 18484177
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Rapid generation of double-layer emulsion droplets based on microfluidic chip].
    Bai L; Yuan H; Tu R; Wang Q; Hua E
    Sheng Wu Gong Cheng Xue Bao; 2020 Jul; 36(7):1405-1413. PubMed ID: 32748598
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generation of liquid metal double emulsion droplets using gravity-induced microfluidics.
    Fan Q; Guo Y; Zhao S; Bao B
    RSC Adv; 2022 Jul; 12(32):20686-20695. PubMed ID: 35919154
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Designer polymer-based microcapsules made using microfluidics.
    Chen PW; Erb RM; Studart AR
    Langmuir; 2012 Jan; 28(1):144-52. PubMed ID: 22118302
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A microfluidic approach to encapsulate living cells in uniform alginate hydrogel microparticles.
    Martinez CJ; Kim JW; Ye C; Ortiz I; Rowat AC; Marquez M; Weitz D
    Macromol Biosci; 2012 Jul; 12(7):946-51. PubMed ID: 22311460
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.