These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 36577386)
1. Fungal CFEM effectors negatively regulate a maize wall-associated kinase by interacting with its alternatively spliced variant to dampen resistance. Zuo N; Bai WZ; Wei WQ; Yuan TL; Zhang D; Wang YZ; Tang WH Cell Rep; 2022 Dec; 41(13):111877. PubMed ID: 36577386 [TBL] [Abstract][Full Text] [Related]
2. Disarm resistance: Fungal effectors target WAK alternative splicing variant for virulence. Liu Z; Jian Y; Shan L Cell Rep; 2023 Jan; 42(1):111939. PubMed ID: 36640313 [TBL] [Abstract][Full Text] [Related]
3. Transcriptome analysis of maize resistance to Fusarium graminearum. Liu Y; Guo Y; Ma C; Zhang D; Wang C; Yang Q BMC Genomics; 2016 Jun; 17():477. PubMed ID: 27352627 [TBL] [Abstract][Full Text] [Related]
4. Cellular Tracking and Gene Profiling of Fusarium graminearum during Maize Stalk Rot Disease Development Elucidates Its Strategies in Confronting Phosphorus Limitation in the Host Apoplast. Zhang Y; He J; Jia LJ; Yuan TL; Zhang D; Guo Y; Wang Y; Tang WH PLoS Pathog; 2016 Mar; 12(3):e1005485. PubMed ID: 26974960 [TBL] [Abstract][Full Text] [Related]
5. The coiled-coil protein-binding motif in Fusarium verticillioides Fsr1 is essential for maize stalk rot virulence. Yamamura Y; Shim WB Microbiology (Reading); 2008 Jun; 154(Pt 6):1637-1645. PubMed ID: 18524918 [TBL] [Abstract][Full Text] [Related]
6. A major QTL for resistance to Gibberella stalk rot in maize. Yang Q; Yin G; Guo Y; Zhang D; Chen S; Xu M Theor Appl Genet; 2010 Aug; 121(4):673-87. PubMed ID: 20401458 [TBL] [Abstract][Full Text] [Related]
7. A transposon-directed epigenetic change in ZmCCT underlies quantitative resistance to Gibberella stalk rot in maize. Wang C; Yang Q; Wang W; Li Y; Guo Y; Zhang D; Ma X; Song W; Zhao J; Xu M New Phytol; 2017 Sep; 215(4):1503-1515. PubMed ID: 28722229 [TBL] [Abstract][Full Text] [Related]
8. Susceptibility of Maize to Stalk Rot Caused by Fusarium graminearum Deoxynivalenol and Zearalenone Mutants. Quesada-Ocampo LM; Al-Haddad J; Scruggs AC; Buell CR; Trail F Phytopathology; 2016 Aug; 106(8):920-7. PubMed ID: 27050573 [TBL] [Abstract][Full Text] [Related]
9. qRfg3, a novel quantitative resistance locus against Gibberella stalk rot in maize. Ma C; Ma X; Yao L; Liu Y; Du F; Yang X; Xu M Theor Appl Genet; 2017 Aug; 130(8):1723-1734. PubMed ID: 28555262 [TBL] [Abstract][Full Text] [Related]
10. Beneficial Rhizobacterium Triggers Induced Systemic Resistance of Maize to Gibberella Stalk Rot via Calcium Signaling. Cao Y; Wang Y; Gui C; Nguvo KJ; Ma L; Wang Q; Shen Q; Zhang R; Gao X Mol Plant Microbe Interact; 2023 Aug; 36(8):516-528. PubMed ID: 37188493 [TBL] [Abstract][Full Text] [Related]
11. Comparative Proteomic Analysis of the Defense Response to Bai H; Si H; Zang J; Pang X; Yu L; Cao H; Xing J; Zhang K; Dong J Front Plant Sci; 2021; 12():694973. PubMed ID: 34489999 [No Abstract] [Full Text] [Related]
12. Phenolics in maize genotypes differing in susceptibility to Gibberella stalk rot (Fusarium graminearum Schwabe). Santiago R; Reid LM; Arnason JT; Zhu X; Martinez N; Malvar RA J Agric Food Chem; 2007 Jun; 55(13):5186-93. PubMed ID: 17547419 [TBL] [Abstract][Full Text] [Related]
13. A guanylyl cyclase-like gene is associated with Gibberella ear rot resistance in maize (Zea mays L.). Yuan J; Liakat Ali M; Taylor J; Liu J; Sun G; Liu W; Masilimany P; Gulati-Sakhuja A; Pauls KP Theor Appl Genet; 2008 Feb; 116(4):465-79. PubMed ID: 18074115 [TBL] [Abstract][Full Text] [Related]
14. Transcriptome profiling of two maize inbreds with distinct responses to Gibberella ear rot disease to identify candidate resistance genes. Kebede AZ; Johnston A; Schneiderman D; Bosnich W; Harris LJ BMC Genomics; 2018 Feb; 19(1):131. PubMed ID: 29426290 [TBL] [Abstract][Full Text] [Related]
15. Gibberella ear rot of maize (Zea mays) in Nepal: distribution of the mycotoxins nivalenol and deoxynivalenol in naturally and experimentally infected maize. Desjardins AE; Busman M; Manandhar G; Jarosz AM; Manandhar HK; Proctor RH J Agric Food Chem; 2008 Jul; 56(13):5428-36. PubMed ID: 18533662 [TBL] [Abstract][Full Text] [Related]
16. Identification of Pathogens and Evaluation of Resistance and Genetic Diversity of Maize Inbred Lines to Stalk Rot in Heilongjiang Province, China. Liu J; Han Y; Li W; Qi T; Zhang J; Li Y Plant Dis; 2023 Feb; 107(2):288-297. PubMed ID: 35815956 [TBL] [Abstract][Full Text] [Related]
17. Aggressiveness and Mycotoxin Production by Machado FJ; de Barros AV; McMaster N; Schmale DG; Vaillancourt LJ; Del Ponte EM Phytopathology; 2022 Feb; 112(2):271-277. PubMed ID: 34142851 [No Abstract] [Full Text] [Related]
18. Host-preferential Fusarium graminearum gene expression during infection of wheat, barley, and maize. Harris LJ; Balcerzak M; Johnston A; Schneiderman D; Ouellet T Fungal Biol; 2016 Jan; 120(1):111-23. PubMed ID: 26693688 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of Resistance Resources and Analysis of Resistance Mechanisms of Maize to Stalk Rot Caused by Zhang X; Zheng S; Yu M; Xu C; Li Y; Sun L; Hu G; Yang J; Qiu X Plant Dis; 2024 Feb; 108(2):348-358. PubMed ID: 37443398 [TBL] [Abstract][Full Text] [Related]
20. Cytological and molecular characterization of quantitative trait locus qRfg1, which confers resistance to gibberella stalk rot in maize. Ye J; Guo Y; Zhang D; Zhang N; Wang C; Xu M Mol Plant Microbe Interact; 2013 Dec; 26(12):1417-28. PubMed ID: 23902264 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]