These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 36577440)

  • 1. In Situ Confocal Fluorescence Lifetime Imaging of Nanopore Electrode Arrays with Redox Active Fluorogenic Amplex Red.
    Lee H; Kim K; Kang CM; Choo A; Han D; Kim J
    Anal Chem; 2023 Jan; 95(2):1038-1046. PubMed ID: 36577440
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescence coupling for direct imaging of electrocatalytic heterogeneity.
    Guerrette JP; Percival SJ; Zhang B
    J Am Chem Soc; 2013 Jan; 135(2):855-61. PubMed ID: 23244164
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescence-enabled electrochemical microscopy with dihydroresorufin as a fluorogenic indicator.
    Oja SM; Guerrette JP; David MR; Zhang B
    Anal Chem; 2014 Jun; 86(12):6040-8. PubMed ID: 24870955
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single Entity Electrochemistry in Nanopore Electrode Arrays: Ion Transport Meets Electron Transfer in Confined Geometries.
    Fu K; Kwon SR; Han D; Bohn PW
    Acc Chem Res; 2020 Apr; 53(4):719-728. PubMed ID: 31990518
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrostatic-gated transport in chemically modified glass nanopore electrodes.
    Wang G; Zhang B; Wayment JR; Harris JM; White HS
    J Am Chem Soc; 2006 Jun; 128(23):7679-86. PubMed ID: 16756325
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoscale electrochemical kinetics & dynamics: the challenges and opportunities of single-entity measurements.
    Edwards MA; Robinson DA; Ren H; Cheyne CG; Tan CS; White HS
    Faraday Discuss; 2018 Oct; 210(0):9-28. PubMed ID: 30264833
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Asymmetric Nanopore Electrode-Based Amplification for Electron Transfer Imaging in Live Cells.
    Ying YL; Hu YX; Gao R; Yu RJ; Gu Z; Lee LP; Long YT
    J Am Chem Soc; 2018 Apr; 140(16):5385-5392. PubMed ID: 29529376
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-induced redox cycling coupled luminescence on nanopore recessed disk-multiscale bipolar electrodes.
    Ma C; Zaino Iii LP; Bohn PW
    Chem Sci; 2015 May; 6(5):3173-3179. PubMed ID: 28706689
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Label-free impedance detection of oligonucleotide hybridisation on interdigitated ultramicroelectrodes using electrochemical redox probes.
    Dharuman V; Grunwald T; Nebling E; Albers J; Blohm L; Hintsche R
    Biosens Bioelectron; 2005 Oct; 21(4):645-54. PubMed ID: 16202878
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Imaging transient formation of diffusion layers with fluorescence-enabled electrochemical microscopy.
    Oja SM; Zhang B
    Anal Chem; 2014 Dec; 86(24):12299-307. PubMed ID: 25398201
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coupling Electrochemistry with Fluorescence Confocal Microscopy To Investigate Electrochemical Reactivity: A Case Study with the Resazurin-Resorufin Fluorogenic Couple.
    Doneux T; Bouffier L; Goudeau B; Arbault S
    Anal Chem; 2016 Jun; 88(12):6292-300. PubMed ID: 27247989
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visualization of Diffusion within Nanoarrays.
    Liu Y; Holzinger A; Knittel P; Poltorak L; Gamero-Quijano A; Rickard WD; Walcarius A; Herzog G; Kranz C; Arrigan DW
    Anal Chem; 2016 Jul; 88(13):6689-95. PubMed ID: 27264360
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bipolar Electrochemistry on a Nanopore-Supported Platinum Nanoparticle Electrode.
    Hao R; Fan Y; Han C; Zhang B
    Anal Chem; 2017 Dec; 89(23):12652-12658. PubMed ID: 29111678
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct oxidative pathway from amplex red to resorufin revealed by in situ confocal imaging.
    Lefrançois P; Vajrala VS; Arredondo IB; Goudeau B; Doneux T; Bouffier L; Arbault S
    Phys Chem Chem Phys; 2016 Oct; 18(37):25817-22. PubMed ID: 27469062
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of channel height and electrode aspect ratio on redox cycling at carbon interdigitated array nanoelectrodes confined in a microchannel.
    Heo JI; Lim Y; Shin H
    Analyst; 2013 Nov; 138(21):6404-11. PubMed ID: 23986087
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemical Control of Rapid Bioorthogonal Tetrazine Ligations for Selective Functionalization of Microelectrodes.
    Ehret F; Wu H; Alexander SC; Devaraj NK
    J Am Chem Soc; 2015 Jul; 137(28):8876-9. PubMed ID: 26132207
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Redox Cycling in Individually Encapsulated Attoliter-Volume Nanopores.
    Kwon SR; Fu K; Han D; Bohn PW
    ACS Nano; 2018 Dec; 12(12):12923-12931. PubMed ID: 30525454
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new dynamic electrochemical transduction mechanism for interdigitated array microelectrodes.
    Zhu X; Choi JW; Ahn CH
    Lab Chip; 2004 Dec; 4(6):581-7. PubMed ID: 15570369
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visualization of electrochemical reactions on microelectrodes using light-addressable potentiometric sensor imaging.
    Chen F; Yang Q; Jiang M; Meng Y; Zhang DW; Wang J
    Anal Chim Acta; 2022 Sep; 1224():340237. PubMed ID: 35998993
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrowetting-Mediated Transport to Produce Electrochemical Transistor Action in Nanopore Electrode Arrays.
    Kwon SR; Baek S; Fu K; Bohn PW
    Small; 2020 May; 16(18):e1907249. PubMed ID: 32270930
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.