BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

44 related articles for article (PubMed ID: 36577448)

  • 1. Automatic recognition of protein subcellular location patterns in single cells from immunofluorescence images based on deep learning.
    Zhu XL; Bao LX; Xue MQ; Xu YY
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36577448
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the objectivity, reliability, and validity of deep learning enabled bioimage analyses.
    Segebarth D; Griebel M; Stein N; von Collenberg CR; Martin C; Fiedler D; Comeras LB; Sah A; Schoeffler V; Lüffe T; Dürr A; Gupta R; Sasi M; Lillesaar C; Lange MD; Tasan RO; Singewald N; Pape HC; Flath CM; Blum R
    Elife; 2020 Oct; 9():. PubMed ID: 33074102
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated identification of protein expression intensity and classification of protein cellular locations in mouse brain regions from immunofluorescence images.
    Bao LX; Luo ZM; Zhu XL; Xu YY
    Med Biol Eng Comput; 2024 Apr; 62(4):1105-1119. PubMed ID: 38150111
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PScL-DDCFPred: an ensemble deep learning-based approach for characterizing multiclass subcellular localization of human proteins from bioimage data.
    Ullah M; Hadi F; Song J; Yu DJ
    Bioinformatics; 2022 Aug; 38(16):4019-4026. PubMed ID: 35771606
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of the Human Protein Atlas Image Classification competition.
    Ouyang W; Winsnes CF; Hjelmare M; Cesnik AJ; Åkesson L; Xu H; Sullivan DP; Dai S; Lan J; Jinmo P; Galib SM; Henkel C; Hwang K; Poplavskiy D; Tunguz B; Wolfinger RD; Gu Y; Li C; Xie J; Buslov D; Fironov S; Kiselev A; Panchenko D; Cao X; Wei R; Wu Y; Zhu X; Tseng KL; Gao Z; Ju C; Yi X; Zheng H; Kappel C; Lundberg E
    Nat Methods; 2019 Dec; 16(12):1254-1261. PubMed ID: 31780840
    [TBL] [Abstract][Full Text] [Related]  

  • 6. HAR_Locator: a novel protein subcellular location prediction model of immunohistochemistry images based on hybrid attention modules and residual units.
    Zou K; Wang S; Wang Z; Zhang Z; Yang F
    Front Mol Biosci; 2023; 10():1171429. PubMed ID: 37664182
    [No Abstract]   [Full Text] [Related]  

  • 7. DeepSP: A Deep Learning Framework for Spatial Proteomics.
    Wang B; Zhang X; Xu C; Han X; Wang Y; Situ C; Li Y; Guo X
    J Proteome Res; 2023 Jul; 22(7):2186-2198. PubMed ID: 37314414
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dual-Signal Feature Spaces Map Protein Subcellular Locations Based on Immunohistochemistry Image and Protein Sequence.
    Zou K; Wang S; Wang Z; Zou H; Yang F
    Sensors (Basel); 2023 Nov; 23(22):. PubMed ID: 38005402
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting Human Protein Subcellular Locations by Using a Combination of Network and Function Features.
    Chen L; Li Z; Zeng T; Zhang YH; Zhang S; Huang T; Cai YD
    Front Genet; 2021; 12():783128. PubMed ID: 34804131
    [TBL] [Abstract][Full Text] [Related]  

  • 10. mRNA-CLA: An interpretable deep learning approach for predicting mRNA subcellular localization.
    Chen Y; Du Z; Ren X; Pan C; Zhu Y; Li Z; Meng T; Yao X
    Methods; 2024 Jul; 227():17-26. PubMed ID: 38705502
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing subcellular protein localization mapping analysis using Sc2promap utilizing attention mechanisms.
    Han K; Liu X; Sun G; Wang Z; Shi C; Liu W; Huang M; Liu S; Guo Q
    Biochim Biophys Acta Gen Subj; 2024 Jun; 1868(6):130601. PubMed ID: 38522679
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-cell subcellular protein localisation using novel ensembles of diverse deep architectures.
    Husain SS; Ong EJ; Minskiy D; Bober-Irizar M; Irizar A; Bober M
    Commun Biol; 2023 May; 6(1):489. PubMed ID: 37147530
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of RNA subcellular localization: Learning from heterogeneous data sources.
    Savulescu AF; Bouilhol E; Beaume N; Nikolski M
    iScience; 2021 Nov; 24(11):103298. PubMed ID: 34765919
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pinpointing Cell Identity in Time and Space.
    Savulescu AF; Jacobs C; Negishi Y; Davignon L; Mhlanga MM
    Front Mol Biosci; 2020; 7():209. PubMed ID: 32923457
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Objective clustering of proteins based on subcellular location patterns.
    Chen X; Murphy RF
    J Biomed Biotechnol; 2005 Jun; 2005(2):87-95. PubMed ID: 16046813
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fisheye transformation enhances deep-learning-based single-cell phenotyping by including cellular microenvironment.
    Toth T; Bauer D; Sukosd F; Horvath P
    Cell Rep Methods; 2022 Dec; 2(12):100339. PubMed ID: 36590690
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CELL-E: A Text-To-Image Transformer for Protein Localization Prediction.
    Khwaja E; Song YS; Huang B
    Res Sq; 2023 Jun; ():. PubMed ID: 37398207
    [TBL] [Abstract][Full Text] [Related]  

  • 18. JDLL: a library to run deep learning models on Java bioimage informatics platforms.
    García López de Haro C; Dallongeville S; Musset T; Gómez-de-Mariscal E; Sage D; Ouyang W; Muñoz-Barrutia A; Tinevez JY; Olivo-Marin JC
    Nat Methods; 2024 Jan; 21(1):7-8. PubMed ID: 38191929
    [No Abstract]   [Full Text] [Related]  

  • 19. Deep-learning methods for unveiling large-scale single-cell transcriptomes.
    Shen X; Li X
    Cancer Biol Med; 2024 Feb; 20(12):972-80. PubMed ID: 38318925
    [No Abstract]   [Full Text] [Related]  

  • 20. Correction to: An automatic immunofluorescence pattern classification framework for HEp-2 image based on supervised learning.
    Brief Bioinform; 2023 Sep; 24(6):. PubMed ID: 37742054
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.