These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 36577626)

  • 1. Validating a double Gaussian source model for small proton fields in a commercial Monte-Carlo dose calculation engine.
    Kugel F; Wulff J; Bäumer C; Janson M; Kretschmer J; Brodbek L; Behrends C; Verbeek N; Looe HK; Poppe B; Timmermann B
    Z Med Phys; 2023 Nov; 33(4):529-541. PubMed ID: 36577626
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Commissioning dose computation models for spot scanning proton beams in water for a commercially available treatment planning system.
    Zhu XR; Poenisch F; Lii M; Sawakuchi GO; Titt U; Bues M; Song X; Zhang X; Li Y; Ciangaru G; Li H; Taylor MB; Suzuki K; Mohan R; Gillin MT; Sahoo N
    Med Phys; 2013 Apr; 40(4):041723. PubMed ID: 23556893
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nuclear halo measurements for accurate prediction of field size factor in a Varian ProBeam proton PBS system.
    Harms J; Chang CW; Zhang R; Lin L
    J Appl Clin Med Phys; 2020 Jan; 21(1):197-204. PubMed ID: 31793202
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Technical note: Evaluation and second check of a commercial Monte Carlo dose engine for small-field apertures in pencil beam scanning proton therapy.
    Holmes J; Shen J; Shan J; Patrick CL; Wong WW; Foote RL; Patel SH; Bues M; Liu W
    Med Phys; 2022 May; 49(5):3497-3506. PubMed ID: 35305269
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of the influence of double and triple Gaussian proton kernel models on accuracy of dose calculations for spot scanning technique.
    Hirayama S; Takayanagi T; Fujii Y; Fujimoto R; Fujitaka S; Umezawa M; Nagamine Y; Hosaka M; Yasui K; Omachi C; Toshito T
    Med Phys; 2016 Mar; 43(3):1437-50. PubMed ID: 26936728
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A standardized commissioning framework of Monte Carlo dose calculation algorithms for proton pencil beam scanning treatment planning systems.
    Chang CW; Huang S; Harms J; Zhou J; Zhang R; Dhabaan A; Slopsema R; Kang M; Liu T; McDonald M; Langen K; Lin L
    Med Phys; 2020 Apr; 47(4):1545-1557. PubMed ID: 31945191
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single pencil beam benchmark of a module for Monte Carlo simulation of proton transport in the PENELOPE code.
    Verbeek N; Wulff J; Bäumer C; Smyczek S; Timmermann B; Brualla L
    Med Phys; 2021 Jan; 48(1):456-476. PubMed ID: 33217026
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dosimetric impact of the low-dose envelope of scanned proton beams at a ProBeam facility: comparison of measurements with TPS and MC calculations.
    Würl M; Englbrecht F; Parodi K; Hillbrand M
    Phys Med Biol; 2016 Jan; 61(2):958-73. PubMed ID: 26738626
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurements of in-air spot size of pencil proton beam for various air gaps in conjunction with a range shifter on a ProteusPLUS PBS dedicated machine and comparison to the proton dose calculation algorithms.
    Rana S; Samuel EJJ
    Australas Phys Eng Sci Med; 2019 Sep; 42(3):853-862. PubMed ID: 31222565
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Validation and clinical implementation of an accurate Monte Carlo code for pencil beam scanning proton therapy.
    Huang S; Kang M; Souris K; Ainsley C; Solberg TD; McDonough JE; Simone CB; Lin L
    J Appl Clin Med Phys; 2018 Sep; 19(5):558-572. PubMed ID: 30058170
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Clinical Validation of a Ray-Casting Analytical Dose Engine for Spot Scanning Proton Delivery Systems.
    Younkin JE; Morales DH; Shen J; Shan J; Bues M; Lentz JM; Schild SE; Stoker JB; Ding X; Liu W
    Technol Cancer Res Treat; 2019; 18():1533033819887182. PubMed ID: 31755362
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clinical validation of a GPU-based Monte Carlo dose engine of a commercial treatment planning system for pencil beam scanning proton therapy.
    Fracchiolla F; Engwall E; Janson M; Tamm F; Lorentini S; Fellin F; Bertolini M; Algranati C; Righetto R; Farace P; Amichetti M; Schwarz M
    Phys Med; 2021 Aug; 88():226-234. PubMed ID: 34311160
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantifying the effect of air gap, depth, and range shifter thickness on TPS dosimetric accuracy in superficial PBS proton therapy.
    Shirey RJ; Wu HT
    J Appl Clin Med Phys; 2018 Jan; 19(1):164-173. PubMed ID: 29239528
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Validation of linear energy transfer computed in a Monte Carlo dose engine of a commercial treatment planning system.
    Wagenaar D; Tran LT; Meijers A; Marmitt GG; Souris K; Bolst D; James B; Biasi G; Povoli M; Kok A; Traneus E; van Goethem MJ; Langendijk JA; Rosenfeld AB; Both S
    Phys Med Biol; 2020 Jan; 65(2):025006. PubMed ID: 31801119
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental characterisation of a proton kernel model for pencil beam scanning techniques.
    De Marzi L; Da Fonseca A; Moignier C; Patriarca A; Goudjil F; Mazal A; Buvat I; Hérault J
    Phys Med; 2019 Aug; 64():195-203. PubMed ID: 31515020
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monte Carlo simulation-based patient-specific QA using machine log files for line-scanning proton radiation therapy.
    Jeon C; Lee J; Shin J; Cheon W; Ahn S; Jo K; Han Y
    Med Phys; 2023 Nov; 50(11):7139-7153. PubMed ID: 37756652
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Commissioning and validation of a novel commercial TPS for ocular proton therapy.
    Wulff J; Koska B; Heufelder J; Janson M; Bäcker CM; Siregar H; Behrends C; Bäumer C; Foerster A; Bechrakis NE; Timmermann B
    Med Phys; 2023 Jan; 50(1):365-379. PubMed ID: 36195575
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modelling small block aperture in an in-house developed GPU-accelerated Monte Carlo-based dose engine for pencil beam scanning proton therapy.
    Feng H; Holmes JM; Vora SA; Stoker JB; Bues M; Wong WW; Sio TS; Foote RL; Patel SH; Shen J; Liu W
    Phys Med Biol; 2024 Jan; 69(3):. PubMed ID: 37944480
    [No Abstract]   [Full Text] [Related]  

  • 19. Very high-energy electron dose calculation using the Fermi-Eyges theory of multiple scattering and a simplified pencil beam model.
    Ronga MG; Deut U; Bonfrate A; De Marzi L
    Med Phys; 2023 Dec; 50(12):8009-8022. PubMed ID: 37730956
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of TPS calculation algorithms on dose delivered to the patient in proton therapy treatments.
    Molinelli S; Russo S; Magro G; Maestri D; Mairani A; Mastella E; Mirandola A; Vai A; Vischioni B; Valvo F; Ciocca M
    Phys Med Biol; 2019 Apr; 64(7):075016. PubMed ID: 30802887
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.