These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

309 related articles for article (PubMed ID: 36578341)

  • 21. Genome Editing Technologies for Rice Improvement: Progress, Prospects, and Safety Concerns.
    Zafar K; Sedeek KEM; Rao GS; Khan MZ; Amin I; Kamel R; Mukhtar Z; Zafar M; Mansoor S; Mahfouz MM
    Front Genome Ed; 2020; 2():5. PubMed ID: 34713214
    [TBL] [Abstract][Full Text] [Related]  

  • 22. CRISPR-Based Genome Editing: Advancements and Opportunities for Rice Improvement.
    Zegeye WA; Tsegaw M; Zhang Y; Cao L
    Int J Mol Sci; 2022 Apr; 23(8):. PubMed ID: 35457271
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development of Improved Fruit, Vegetable, and Ornamental Crops Using the CRISPR/Cas9 Genome Editing Technique.
    Erpen-Dalla Corte L; M Mahmoud L; S Moraes T; Mou Z; W Grosser J; Dutt M
    Plants (Basel); 2019 Dec; 8(12):. PubMed ID: 31847196
    [TBL] [Abstract][Full Text] [Related]  

  • 24. CRISPR/Cas9 for development of disease resistance in plants: recent progress, limitations and future prospects.
    Ahmad S; Wei X; Sheng Z; Hu P; Tang S
    Brief Funct Genomics; 2020 Jan; 19(1):26-39. PubMed ID: 31915817
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nanotechnology and CRISPR/Cas9 system for sustainable agriculture.
    Khanna K; Ohri P; Bhardwaj R
    Environ Sci Pollut Res Int; 2023 Dec; 30(56):118049-118064. PubMed ID: 36973619
    [TBL] [Abstract][Full Text] [Related]  

  • 26. CRISPR/Cas9 genome editing in wheat: enhancing quality and productivity for global food security-a review.
    Elsharawy H; Refat M
    Funct Integr Genomics; 2023 Aug; 23(3):265. PubMed ID: 37541970
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Challenges Facing CRISPR/Cas9-Based Genome Editing in Plants.
    Son S; Park SR
    Front Plant Sci; 2022; 13():902413. PubMed ID: 35677236
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Gene Therapy with CRISPR/Cas9 Coming to Age for HIV Cure.
    Soriano V
    AIDS Rev; 2017; 19(3):167-172. PubMed ID: 29019352
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Oil Palm Breeding in the Modern Era: Challenges and Opportunities.
    John Martin JJ; Yarra R; Wei L; Cao H
    Plants (Basel); 2022 May; 11(11):. PubMed ID: 35684168
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Draft genome sequence of an elite Dura palm and whole-genome patterns of DNA variation in oil palm.
    Jin J; Lee M; Bai B; Sun Y; Qu J; Rahmadsyah ; Alfiko Y; Lim CH; Suwanto A; Sugiharti M; Wong L; Ye J; Chua NH; Yue GH
    DNA Res; 2016 Dec; 23(6):527-533. PubMed ID: 27426468
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genetic control of fatty acid composition in coconut (Cocos nucifera), African oil palm (Elaeis guineensis), and date palm (Phoenix dactylifera).
    Xiao Y; Xia W; Mason AS; Cao Z; Fan H; Zhang B; Zhang J; Ma Z; Peng M; Huang D
    Planta; 2019 Feb; 249(2):333-350. PubMed ID: 30194535
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Gene-Editing Technologies and Applications in Legumes: Progress, Evolution, and Future Prospects.
    Baloglu MC; Celik Altunoglu Y; Baloglu P; Yildiz AB; Türkölmez N; Özden Çiftçi Y
    Front Genet; 2022; 13():859437. PubMed ID: 35836569
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genome Editing for Sustainable Agriculture in Africa.
    Tripathi L; Dhugga KS; Ntui VO; Runo S; Syombua ED; Muiruri S; Wen Z; Tripathi JN
    Front Genome Ed; 2022; 4():876697. PubMed ID: 35647578
    [TBL] [Abstract][Full Text] [Related]  

  • 34. CRISPR/Cas9 is a powerful tool for precise genome editing of legume crops: a review.
    Rasheed A; Barqawi AA; Mahmood A; Nawaz M; Shah AN; Bay DH; Alahdal MA; Hassan MU; Qari SH
    Mol Biol Rep; 2022 Jun; 49(6):5595-5609. PubMed ID: 35585381
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genome editing for vegetable crop improvement: Challenges and future prospects.
    Devi R; Chauhan S; Dhillon TS
    Front Genet; 2022; 13():1037091. PubMed ID: 36482900
    [TBL] [Abstract][Full Text] [Related]  

  • 36. CRISPR/Cas9 technology for improving agronomic traits and future prospective in agriculture.
    Rao MJ; Wang L
    Planta; 2021 Sep; 254(4):68. PubMed ID: 34498163
    [TBL] [Abstract][Full Text] [Related]  

  • 37. CRISPR/Cas genome editing in plants: Dawn of Agrobacterium transformation for recalcitrant and transgene-free plants for future crop breeding.
    Antony Ceasar S; Ignacimuthu S
    Plant Physiol Biochem; 2023 Mar; 196():724-730. PubMed ID: 36812799
    [TBL] [Abstract][Full Text] [Related]  

  • 38. CRISPR/Cas: A powerful tool for gene function study and crop improvement.
    Zhang D; Zhang Z; Unver T; Zhang B
    J Adv Res; 2021 Mar; 29():207-221. PubMed ID: 33842017
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Recent advances in CRISPR/Cas9 and applications for wheat functional genomics and breeding.
    Li J; Li Y; Ma L
    aBIOTECH; 2021 Dec; 2(4):375-385. PubMed ID: 36304421
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Exploring the potential of CRISPR/Cas genome editing for vegetable crop improvement: An overview of challenges and approaches.
    Das T; Anand U; Pal T; Mandal S; Kumar M; Radha ; Gopalakrishnan AV; Lastra JMP; Dey A
    Biotechnol Bioeng; 2023 May; 120(5):1215-1228. PubMed ID: 36740587
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.