These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 36578389)

  • 1. Magnesium recovery from ferrochrome slag: kinetics and possible use in a circular economy.
    Moyo LB; Simate GS; Mamvura TA
    Heliyon; 2022 Dec; 8(12):e12176. PubMed ID: 36578389
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recovering phosphorus as struvite from anaerobic digestate of pig manure with ferrochrome slag as a magnesium source.
    Moyo LB; Simate GS; Mamvura TA; Danha G
    Heliyon; 2023 Apr; 9(4):e15506. PubMed ID: 37151647
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ferrochrome slag: A critical review of its properties, environmental issues and sustainable utilization.
    Das SK; Tripathi AK; Kandi SK; Mustakim SM; Bhoi B; Rajput P
    J Environ Manage; 2023 Jan; 326(Pt A):116674. PubMed ID: 36410302
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Environmental impact of ferrochrome slag in road construction.
    Lind BB; Fällman AM; Larsson LB
    Waste Manag; 2001; 21(3):255-64. PubMed ID: 11280517
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Utilization of ferrochrome wastes such as ferrochrome ash and ferrochrome slag in concrete manufacturing.
    Acharya PK; Patro SK
    Waste Manag Res; 2016 Aug; 34(8):764-74. PubMed ID: 27357563
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermodynamics and Kinetics of Sulfuric Acid Leaching Transformation of Rare Earth Fluoride Molten Salt Electrolysis Slag.
    Chen L; Xu J; Yu X; Tian L; Wang R; Xu Z
    Front Chem; 2021; 9():574722. PubMed ID: 33738275
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetics of extracting valuable components from Ti-bearing blast furnace slag by acidolysis with sulphuric acid.
    Wang Y; Gao X; He S; Guo J
    Front Chem; 2024; 12():1369937. PubMed ID: 38389723
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of the Direct Reduction of Chromite Process as a Clean Ferrochrome Technology.
    Paktunc D; Coumans JP; Carter D; Zagrtdenov N; Duguay D
    ACS Eng Au; 2024 Feb; 4(1):125-138. PubMed ID: 38405365
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Leaching Kinetics of Vanadium from Calcium-Roasting High-Chromium Vanadium Slag Enhanced by Electric Field.
    Peng H; Guo J; Zhang X
    ACS Omega; 2020 Jul; 5(28):17664-17671. PubMed ID: 32715252
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hexavalent chromium removal by ferrochromium slag.
    Erdem M; Altundoğan HS; Turan MD; Tümen F
    J Hazard Mater; 2005 Nov; 126(1-3):176-82. PubMed ID: 16098660
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Co-recovery of Mn and Fe from pyrolusite and copper slag with hydrometallurgy process: Kinetics and leaching mechanisms.
    Wang L; Chen Y; Xu Y; Ma Y; Du Y
    Environ Sci Pollut Res Int; 2023 Dec; 30(60):125877-125888. PubMed ID: 38008844
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of compound chemical activators on the hydration of low-carbon ferrochrome slag-based composite cement.
    Zhou X; Hao X; Ma Q; Luo Z; Zhang M; Peng J
    J Environ Manage; 2017 Apr; 191():58-65. PubMed ID: 28086141
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sustainable recovery of valuable metals from spent lithium-ion batteries using DL-malic acid: Leaching and kinetics aspect.
    Sun C; Xu L; Chen X; Qiu T; Zhou T
    Waste Manag Res; 2018 Feb; 36(2):113-120. PubMed ID: 29212425
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Leaching and purification of indium from waste liquid crystal display panel after hydrothermal pretreatment: Optimum conditions determination and kinetic analysis.
    Cao Y; Li F; Li G; Huang J; Zhu H; He W
    Waste Manag; 2020 Feb; 102():635-644. PubMed ID: 31785523
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recovery of rare earth elements from waste phosphors via alkali fusion roasting and controlled potential reduction leaching.
    Xie B; Liu C; Wei B; Wang R; Ren R
    Waste Manag; 2023 May; 163():43-51. PubMed ID: 37001311
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient leaching process of rare earth, alkali and alkaline earth metals from phosphogypsum based on methanesulfonic acid (MSA) as green & eco-friendly lixiviant.
    Ait Brahim J; Merroune A; Boulif R; Mounir EM; Beniazza R
    RSC Adv; 2022 Oct; 12(47):30639-30649. PubMed ID: 36337937
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Treatment of copper converter slag with deep eutectic solvent as green chemical.
    Topçu MA; Rüşen A; Küçük Ö
    Waste Manag; 2021 Aug; 132():64-73. PubMed ID: 34314950
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of Phase Composition on Leaching Behavior and Mechanical Properties of Ceramics from Ferrochrome Slag and Tundish Slag.
    Pei D; Li Y; Duan X; Cang D; Yang Y; McLean A; Guo Z; Xu C
    Materials (Basel); 2022 Mar; 15(6):. PubMed ID: 35329445
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Zinc recovery from metallurgical slag and dust by coordination leaching in NH
    Ma A; Zheng X; Li S; Wang Y; Zhu S
    R Soc Open Sci; 2018 Jul; 5(7):180660. PubMed ID: 30109111
    [TBL] [Abstract][Full Text] [Related]  

  • 20. From hazardous waste to fertilizer: Recovery of high-value metals from smelter slags.
    Mikula K; Skrzypczak D; Izydorczyk G; Baśladyńska S; Szustakiewicz K; Gorazda K; Moustakas K; Chojnacka K; Witek-Krowiak A
    Chemosphere; 2022 Jun; 297():134226. PubMed ID: 35271895
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.