BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 36578414)

  • 1. Prostate cancer small extracellular vesicles participate in androgen-independent transformation of prostate cancer by transferring let-7a-5p.
    Lei L; Yu L; Fan W; Hao X
    Heliyon; 2022 Dec; 8(12):e12114. PubMed ID: 36578414
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crosstalk Between AR and Wnt Signaling Promotes Castration-Resistant Prostate Cancer Growth.
    Luo J; Wang D; Wan X; Xu Y; Lu Y; Kong Z; Li D; Gu W; Wang C; Li Y; Ji C; Gu S; Xu Y
    Onco Targets Ther; 2020; 13():9257-9267. PubMed ID: 32982312
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Androgen deprivation therapy has no effect on Pim-1 expression in a mouse model of prostate cancer.
    Wang J; Li G; Li B; Song H; Shang Z; Jiang N; Niu Y
    Oncol Lett; 2017 Jun; 13(6):4364-4370. PubMed ID: 28599438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. LncRNA LOXL1-AS1/miR-let-7a-5p/EGFR-related pathway regulates the doxorubicin resistance of prostate cancer DU-145 cells.
    Bai T; Liu Y; Li B
    IUBMB Life; 2019 Oct; 71(10):1537-1551. PubMed ID: 31188543
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ErbB-2 signaling plays a critical role in regulating androgen-sensitive and castration-resistant androgen receptor-positive prostate cancer cells.
    Muniyan S; Chen SJ; Lin FF; Wang Z; Mehta PP; Batra SK; Lin MF
    Cell Signal; 2015 Nov; 27(11):2261-71. PubMed ID: 26257301
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Androgen deprivation therapy induces androgen receptor-dependent upregulation of Egr1 in prostate cancers.
    Xu B; Tang G; Xiao C; Wang L; Yang Q; Sun Y
    Int J Clin Exp Pathol; 2014; 7(6):2883-93. PubMed ID: 25031707
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Overexpression of lysine-specific demethylase 1 promotes androgen-independent transition of human prostate cancer LNCaP cells through activation of the AR signaling pathway and suppression of the p53 signaling pathway.
    Li X; Li T; Chen D; Zhang P; Song Y; Zhu H; Xiao Y; Xing Y
    Oncol Rep; 2016 Jan; 35(1):584-92. PubMed ID: 26534764
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interleukin-6 induces VEGF secretion from prostate cancer cells in a manner independent of androgen receptor activation.
    Ishii K; Sasaki T; Iguchi K; Kajiwara S; Kato M; Kanda H; Hirokawa Y; Arima K; Mizokami A; Sugimura Y
    Prostate; 2018 Aug; 78(11):849-856. PubMed ID: 29707793
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Restoration of FKBP51 protein promotes the progression of castration resistant prostate cancer.
    Yu J; Sun L; Hao T; Zhang B; Chen X; Li H; Zhang Z; Zhu S; Quan C; Niu Y; Shang Z
    Ann Transl Med; 2019 Dec; 7(23):729. PubMed ID: 32042745
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The metabolic role of PFKFB4 in androgen-independent growth in vitro and PFKFB4 expression in human prostate cancer tissue.
    Li X; Chen Z; Li Z; Huang G; Lin J; Wei Q; Liang J; Li W
    BMC Urol; 2020 Jun; 20(1):61. PubMed ID: 32487245
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of Anti-Cancer Activity of Curcumin on Androgen-Dependent and Androgen-Independent Prostate Cancer.
    Abd Wahab NA; Lajis NH; Abas F; Othman I; Naidu R
    Nutrients; 2020 Mar; 12(3):. PubMed ID: 32131560
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ubiquitous mitochondrial creatine kinase is overexpressed in the conditioned medium and the extract of LNCaP lineaged androgen independent cell lines and facilitates prostate cancer progression.
    Pang B; Zhang H; Wang J; Chen WZ; Li SH; Shi QG; Liang RX; Xie BX; Wu RQ; Qian XL; Yu L; Li QM; Huang CF; Zhou JG
    Prostate; 2009 Aug; 69(11):1176-87. PubMed ID: 19415690
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long non-coding RNA LOC283070 mediates the transition of LNCaP cells into androgen-independent cells possibly via CAMK1D.
    Wang L; Lin Y; Meng H; Liu C; Xue J; Zhang Q; Li C; Zhang P; Cui F; Chen W; Jiang A
    Am J Transl Res; 2016; 8(12):5219-5234. PubMed ID: 28077997
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activin A regulates microRNAs and gene expression in LNCaP cells.
    Ottley EC; Nicholson HD; Gold EJ
    Prostate; 2016 Aug; 76(11):951-63. PubMed ID: 27018851
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Loss of exosomal miR-146a-5p from cancer-associated fibroblasts after androgen deprivation therapy contributes to prostate cancer metastasis.
    Zhang Y; Zhao J; Ding M; Su Y; Cui D; Jiang C; Zhao S; Jia G; Wang X; Ruan Y; Jing Y; Xia S; Han B
    J Exp Clin Cancer Res; 2020 Dec; 39(1):282. PubMed ID: 33317606
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Androgen deprivation‑induced OPHN1 amplification promotes castration‑resistant prostate cancer.
    Liu J; Zhang Y; Li S; Sun F; Wang G; Wei D; Yang T; Gu S
    Oncol Rep; 2022 Jan; 47(1):. PubMed ID: 34738630
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exosomal LINC01213 Plays a Role in the Transition of Androgen-Dependent Prostate Cancer Cells into Androgen-Independent Manners.
    Guo Z; Lu X; Yang F; He C; Qin L; Yang N; Han C; Wu J
    J Oncol; 2022; 2022():8058770. PubMed ID: 35310913
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Androgen-independent LNCaP cells are a subline of LNCaP cells with a more aggressive phenotype and androgen suppresses their growth by inducing cell cycle arrest at the G1 phase.
    Yu P; Duan X; Cheng Y; Liu C; Chen Y; Liu W; Yin B; Wang X; Tao Z
    Int J Mol Med; 2017 Nov; 40(5):1426-1434. PubMed ID: 28901378
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Down-regulation of calcium/calmodulin-dependent protein kinase kinase 2 by androgen deprivation induces castration-resistant prostate cancer.
    Shima T; Mizokami A; Miyagi T; Kawai K; Izumi K; Kumaki M; Ofude M; Zhang J; Keller ET; Namiki M
    Prostate; 2012 Dec; 72(16):1789-801. PubMed ID: 22549914
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MiR-4638-5p inhibits castration resistance of prostate cancer through repressing Kidins220 expression and PI3K/AKT pathway activity.
    Wang Y; Shao N; Mao X; Zhu M; Fan W; Shen Z; Xiao R; Wang C; Bao W; Xu X; Yang C; Dong J; Yu D; Wu Y; Zhu C; Wen L; Lu X; Lu YJ; Feng N
    Oncotarget; 2016 Jul; 7(30):47444-47464. PubMed ID: 27329728
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.