These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 36579407)
1. Bifidobacterial GH146 β-l-Arabinofuranosidase (Bll4HypBA1) as the Last Enzyme for the Complete Removal of Oligoarabinofuranosides from Hydroxyproline-Rich Glycoproteins. Ishiwata A; Tsunomachi H; Kameyama K; Sophon K; Nakamura M; Kitahara K; Tanaka K; Ito Y; Fujita K Chembiochem; 2023 Mar; 24(5):e202200637. PubMed ID: 36579407 [TBL] [Abstract][Full Text] [Related]
2. Functional characterization of unique enzymes in Xanthomonas euvesicatoria related to degradation of arabinofurano-oligosaccharides on hydroxyproline-rich glycoproteins. Nakamura M; Yasukawa Y; Furusawa A; Fuchiwaki T; Honda T; Okamura Y; Fujita K; Iwai H PLoS One; 2018; 13(8):e0201982. PubMed ID: 30092047 [TBL] [Abstract][Full Text] [Related]
3. Bifidobacterial GH146 β-L-arabinofuranosidase for the removal of β1,3-L-arabinofuranosides on plant glycans. Fujita K; Tsunomachi H; Lixia P; Maruyama S; Miyake M; Dakeshita A; Kitahara K; Tanaka K; Ito Y; Ishiwata A; Fushinobu S Appl Microbiol Biotechnol; 2024 Feb; 108(1):199. PubMed ID: 38324037 [TBL] [Abstract][Full Text] [Related]
4. Molecular cloning and characterization of a beta-L-Arabinobiosidase in Bifidobacterium longum that belongs to a novel glycoside hydrolase family. Fujita K; Sakamoto S; Ono Y; Wakao M; Suda Y; Kitahara K; Suganuma T J Biol Chem; 2011 Feb; 286(7):5143-50. PubMed ID: 21149454 [TBL] [Abstract][Full Text] [Related]
5. Mechanism of Cooperative Degradation of Gum Arabic Arabinogalactan Protein by Bifidobacterium longum Surface Enzymes. Sasaki Y; Komeno M; Ishiwata A; Horigome A; Odamaki T; Xiao JZ; Tanaka K; Ito Y; Kitahara K; Ashida H; Fujita K Appl Environ Microbiol; 2022 Mar; 88(6):e0218721. PubMed ID: 35108084 [TBL] [Abstract][Full Text] [Related]
6. Two α-L-arabinofuranosidases from Bifidobacterium longum subsp. longum are involved in arabinoxylan utilization. Komeno M; Yoshihara Y; Kawasaki J; Nabeshima W; Maeda K; Sasaki Y; Fujita K; Ashida H Appl Microbiol Biotechnol; 2022 Mar; 106(5-6):1957-1965. PubMed ID: 35235007 [TBL] [Abstract][Full Text] [Related]
7. Crystal structure of β-L-arabinobiosidase belonging to glycoside hydrolase family 121. Saito K; Viborg AH; Sakamoto S; Arakawa T; Yamada C; Fujita K; Fushinobu S PLoS One; 2020; 15(6):e0231513. PubMed ID: 32479540 [TBL] [Abstract][Full Text] [Related]
8. Mechanism-based inhibition of GH127/146 cysteine glycosidases by stereospecifically functionalized l-arabinofuranosides. Ishiwata A; Narita S; Kimura K; Tanaka K; Fujita K; Fushinobu S; Ito Y Bioorg Med Chem; 2022 Dec; 75():117054. PubMed ID: 36334492 [TBL] [Abstract][Full Text] [Related]
9. Structural analysis of β-L-arabinobiose-binding protein in the metabolic pathway of hydroxyproline-rich glycoproteins in Bifidobacterium longum. Miyake M; Terada T; Shimokawa M; Sugimoto N; Arakawa T; Shimizu K; Igarashi K; Fujita K; Fushinobu S FEBS J; 2020 Dec; 287(23):5114-5129. PubMed ID: 32246585 [TBL] [Abstract][Full Text] [Related]
10. Synthesis of the highly glycosylated hydrophilic motif of extensins. Ishiwata A; Kaeothip S; Takeda Y; Ito Y Angew Chem Int Ed Engl; 2014 Sep; 53(37):9812-6. PubMed ID: 25044558 [TBL] [Abstract][Full Text] [Related]
11. Two Novel α-l-Arabinofuranosidases from Komeno M; Hayamizu H; Fujita K; Ashida H Appl Environ Microbiol; 2019 Mar; 85(6):. PubMed ID: 30635377 [TBL] [Abstract][Full Text] [Related]
12. Structural studies of the carbohydrate moieties of lectins from potato (Solanum tuberosum) tubers and thorn-apple (Datura stramonium) seeds. Ashford D; Desai NN; Allen AK; Neuberger A; O'Neill MA; Selvendran RR Biochem J; 1982 Jan; 201(1):199-208. PubMed ID: 7082284 [TBL] [Abstract][Full Text] [Related]
13. Characterization of a novel β-L-arabinofuranosidase in Bifidobacterium longum: functional elucidation of a DUF1680 protein family member. Fujita K; Takashi Y; Obuchi E; Kitahara K; Suganuma T J Biol Chem; 2014 Feb; 289(8):5240-9. PubMed ID: 24385433 [TBL] [Abstract][Full Text] [Related]
15. Degradative enzymes for type II arabinogalactan side chains in Bifidobacterium longum subsp. longum. Fujita K; Sakamoto A; Kaneko S; Kotake T; Tsumuraya Y; Kitahara K Appl Microbiol Biotechnol; 2019 Feb; 103(3):1299-1310. PubMed ID: 30564851 [TBL] [Abstract][Full Text] [Related]
16. Stereoselective synthesis of Arabidopsis CLAVATA3 (CLV3) glycopeptide, unique protein post-translational modifications of secreted peptide hormone in plant. Kaeothip S; Ishiwata A; Ito Y Org Biomol Chem; 2013 Sep; 11(35):5892-907. PubMed ID: 23912193 [TBL] [Abstract][Full Text] [Related]
17. Crystal structure of glycoside hydrolase family 127 β-l-arabinofuranosidase from Bifidobacterium longum. Ito T; Saikawa K; Kim S; Fujita K; Ishiwata A; Kaeothip S; Arakawa T; Wakagi T; Beckham GT; Ito Y; Fushinobu S Biochem Biophys Res Commun; 2014 Apr; 447(1):32-7. PubMed ID: 24680821 [TBL] [Abstract][Full Text] [Related]
18. Crystallization and preliminary X-ray diffraction analysis of a novel β-L-arabinofuranosidase (HypBA1) from Bifidobacterium longum. Zhu Z; He M; Huang CH; Ko TP; Zeng YF; Huang YN; Jia S; Lu F; Liu JR; Guo RT Acta Crystallogr F Struct Biol Commun; 2014 May; 70(Pt 5):636-8. PubMed ID: 24817727 [TBL] [Abstract][Full Text] [Related]
19. Characterization of a novel β-L-Arabinofuranosidase in Bifidobacterium longum: functional elucidation of A DUF1680 family member. Fujita K; Takashi Y; Obuchi E; Kitahara K; Suganuma T J Biol Chem; 2011 Nov; 286(44):38079-38085. PubMed ID: 21914802 [TBL] [Abstract][Full Text] [Related]
20. Tandem mass spectrometry and structural elucidation of glycopeptides from a hydroxyproline-rich plant cell wall glycoprotein indicate that contiguous hydroxyproline residues are the major sites of hydroxyproline O-arabinosylation. Kieliszewski MJ; O'Neill M; Leykam J; Orlando R J Biol Chem; 1995 Feb; 270(6):2541-9. PubMed ID: 7852316 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]