These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 36579923)
41. Determination of carnosic acid in Rosmarinus officinalis L. using square wave voltammetry and electrochemical behavior. Yilmaz ÜT; Calik E; Akdulum B; Yilmaz H J Food Drug Anal; 2018 Jan; 26(1):300-308. PubMed ID: 29389567 [TBL] [Abstract][Full Text] [Related]
42. Genome of Tripterygium wilfordii and identification of cytochrome P450 involved in triptolide biosynthesis. Tu L; Su P; Zhang Z; Gao L; Wang J; Hu T; Zhou J; Zhang Y; Zhao Y; Liu Y; Song Y; Tong Y; Lu Y; Yang J; Xu C; Jia M; Peters RJ; Huang L; Gao W Nat Commun; 2020 Feb; 11(1):971. PubMed ID: 32080175 [TBL] [Abstract][Full Text] [Related]
43. Recovery mechanism of the antioxidant activity from carnosic acid quinone, an oxidized sage and rosemary antioxidant. Masuda T; Inaba Y; Maekawa T; Takeda Y; Tamura H; Yamaguchi H J Agric Food Chem; 2002 Oct; 50(21):5863-9. PubMed ID: 12358451 [TBL] [Abstract][Full Text] [Related]
44. Transcriptome analysis of medicinal plant Salvia miltiorrhiza and identification of genes related to tanshinone biosynthesis. Yang L; Ding G; Lin H; Cheng H; Kong Y; Wei Y; Fang X; Liu R; Wang L; Chen X; Yang C PLoS One; 2013; 8(11):e80464. PubMed ID: 24260395 [TBL] [Abstract][Full Text] [Related]
45. Cytochrome P450 enzymes: A driving force of plant diterpene diversity. Bathe U; Tissier A Phytochemistry; 2019 May; 161():149-162. PubMed ID: 30733060 [TBL] [Abstract][Full Text] [Related]
46. Bioaccessibility and inhibitory effects on digestive enzymes of carnosic acid in sage and rosemary. Ercan P; El SN Int J Biol Macromol; 2018 Aug; 115():933-939. PubMed ID: 29709538 [TBL] [Abstract][Full Text] [Related]
47. Transcriptomic analysis reveals potential genes involved in tanshinone biosynthesis in Salvia miltiorrhiza. Chang Y; Wang M; Li J; Lu S Sci Rep; 2019 Oct; 9(1):14929. PubMed ID: 31624328 [TBL] [Abstract][Full Text] [Related]
48. Functional characterization of the cytochrome P450 monooxygenase CYP71AU87 indicates a role in marrubiin biosynthesis in the medicinal plant Marrubium vulgare. Karunanithi PS; Dhanota P; Addison JB; Tong S; Fiehn O; Zerbe P BMC Plant Biol; 2019 Mar; 19(1):114. PubMed ID: 30909879 [TBL] [Abstract][Full Text] [Related]
49. Cytochrome P450 promiscuity leads to a bifurcating biosynthetic pathway for tanshinones. Guo J; Ma X; Cai Y; Ma Y; Zhan Z; Zhou YJ; Liu W; Guan M; Yang J; Cui G; Kang L; Yang L; Shen Y; Tang J; Lin H; Ma X; Jin B; Liu Z; Peters RJ; Zhao ZK; Huang L New Phytol; 2016 Apr; 210(2):525-34. PubMed ID: 26682704 [TBL] [Abstract][Full Text] [Related]
50. CYP76AH1 catalyzes turnover of miltiradiene in tanshinones biosynthesis and enables heterologous production of ferruginol in yeasts. Guo J; Zhou YJ; Hillwig ML; Shen Y; Yang L; Wang Y; Zhang X; Liu W; Peters RJ; Chen X; Zhao ZK; Huang L Proc Natl Acad Sci U S A; 2013 Jul; 110(29):12108-13. PubMed ID: 23812755 [TBL] [Abstract][Full Text] [Related]
51. A chromosome-level genome assembly of chia provides insights into high omega-3 content and coat color variation of its seeds. Wang L; Lee M; Sun F; Song Z; Yang Z; Yue GH Plant Commun; 2022 Jul; 3(4):100326. PubMed ID: 35605203 [TBL] [Abstract][Full Text] [Related]
52. Antioxidative constituents of Rosmarinus officinalis and Salvia officinalis. II. Isolation of carnosic acid and formation of other phenolic diterpenes. Schwarz K; Ternes W Z Lebensm Unters Forsch; 1992 Aug; 195(2):99-103. PubMed ID: 1529648 [TBL] [Abstract][Full Text] [Related]
53. Expansion within the CYP71D subfamily drives the heterocyclization of tanshinones synthesis in Salvia miltiorrhiza. Ma Y; Cui G; Chen T; Ma X; Wang R; Jin B; Yang J; Kang L; Tang J; Lai C; Wang Y; Zhao Y; Shen Y; Zeng W; Peters RJ; Qi X; Guo J; Huang L Nat Commun; 2021 Jan; 12(1):685. PubMed ID: 33514704 [TBL] [Abstract][Full Text] [Related]
54. Brain Mitochondria as a Therapeutic Target for Carnosic Acid. Infantino V; Pappalardo I; Santarsiero A; Tripathi S; Singh G; de Oliveira MR J Integr Neurosci; 2024 Mar; 23(3):53. PubMed ID: 38538219 [TBL] [Abstract][Full Text] [Related]
55. Rapid quantitative enrichment of carnosic acid from rosemary (Rosmarinus officinalis L.) by isoelectric focused adsorptive bubble chromatography. Backleh M; Leupold G; Parlar H J Agric Food Chem; 2003 Feb; 51(5):1297-301. PubMed ID: 12590472 [TBL] [Abstract][Full Text] [Related]
56. Candidate genes involved in tanshinone biosynthesis in hairy roots of Salvia miltiorrhiza revealed by cDNA microarray. Cui G; Huang L; Tang X; Zhao J Mol Biol Rep; 2011 Apr; 38(4):2471-8. PubMed ID: 21082262 [TBL] [Abstract][Full Text] [Related]
57. Chromosome-scale genome assembly of Glycyrrhiza uralensis revealed metabolic gene cluster centred specialized metabolites biosynthesis. Rai A; Hirakawa H; Rai M; Shimizu Y; Shirasawa K; Kikuchi S; Seki H; Yamazaki M; Toyoda A; Isobe S; Muranaka T; Saito K DNA Res; 2022 Dec; 29(6):. PubMed ID: 36535891 [TBL] [Abstract][Full Text] [Related]
58. Metabolomics and DNA-Based Authentication of Two Traditional Asian Medicinal and Aromatic Species of Bielecka M; Pencakowski B; Stafiniak M; Jakubowski K; Rahimmalek M; Gharibi S; Matkowski A; Ślusarczyk S Cells; 2021 Jan; 10(1):. PubMed ID: 33435339 [TBL] [Abstract][Full Text] [Related]
60. Insights into the plateau adaptation of Salvia castanea by comparative genomic and WGCNA analyses. Xu L; Cao M; Wang Q; Xu J; Liu C; Ullah N; Li J; Hou Z; Liang Z; Zhou W; Liu A J Adv Res; 2022 Dec; 42():221-235. PubMed ID: 36089521 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]