These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 36579941)
1. Amplified Fenton-Based Oxidative Stress Utilizing Ultraviolet Upconversion Luminescence-Fueled Nanoreactors for Apoptosis-Strengthened Ferroptosis Anticancer Therapy. Nguyen NT; Kim J; Le XT; Lee WT; Lee ES; Oh KT; Choi HG; Youn YS ACS Nano; 2023 Jan; 17(1):382-401. PubMed ID: 36579941 [TBL] [Abstract][Full Text] [Related]
2. UCNPs-based nanoreactors with ultraviolet radiation-induced effect for enhanced ferroptosis therapy of tumor. Zhang K; Wang J; Peng L; Zhang Y; Zhang J; Zhao W; Ma S; Mao C; Zhang S J Colloid Interface Sci; 2023 Dec; 651():567-578. PubMed ID: 37562299 [TBL] [Abstract][Full Text] [Related]
3. Au-Fe Wei R; Fu G; Li Z; Liu Y; Qi L; Liu K; Zhao Z; Xue M J Colloid Interface Sci; 2024 Jun; 663():644-655. PubMed ID: 38430834 [TBL] [Abstract][Full Text] [Related]
4. Manganese-deposited iron oxide promotes tumor-responsive ferroptosis that synergizes the apoptosis of cisplatin. Cheng J; Zhu Y; Xing X; Xiao J; Chen H; Zhang H; Wang D; Zhang Y; Zhang G; Wu Z; Liu Y Theranostics; 2021; 11(11):5418-5429. PubMed ID: 33859755 [No Abstract] [Full Text] [Related]
5. Tumor-Targeted Cascade Nanoreactor Based on Metal-Organic Frameworks for Synergistic Ferroptosis-Starvation Anticancer Therapy. Wan X; Song L; Pan W; Zhong H; Li N; Tang B ACS Nano; 2020 Sep; 14(9):11017-11028. PubMed ID: 32786253 [TBL] [Abstract][Full Text] [Related]
6. Hypoxia-responsive nanoreactors based on self-enhanced photodynamic sensitization and triggered ferroptosis for cancer synergistic therapy. Wang X; Wu M; Zhang X; Li F; Zeng Y; Lin X; Liu X; Liu J J Nanobiotechnology; 2021 Jul; 19(1):204. PubMed ID: 34238297 [TBL] [Abstract][Full Text] [Related]
7. Enhanced photothermal-ferroptosis effects based on RBCm-coated PDA nanoparticles for effective cancer therapy. Yu H; Yan J; Li Z; Song T; Ning F; Tan J; Sun Y J Mater Chem B; 2023 Jan; 11(2):415-429. PubMed ID: 36512437 [TBL] [Abstract][Full Text] [Related]
8. Metal-Polyphenol-Network Coated Prussian Blue Nanoparticles for Synergistic Ferroptosis and Apoptosis via Triggered GPX4 Inhibition and Concurrent In Situ Bleomycin Toxification. Zhou L; Chen J; Li R; Wei L; Xiong H; Wang C; Chai K; Chen M; Zhu Z; Yao T; Lin Y; Dong C; Shi S Small; 2021 Nov; 17(47):e2103919. PubMed ID: 34623753 [TBL] [Abstract][Full Text] [Related]
9. Near infrared-assisted Fenton reaction for tumor-specific and mitochondrial DNA-targeted photochemotherapy. Hu P; Wu T; Fan W; Chen L; Liu Y; Ni D; Bu W; Shi J Biomaterials; 2017 Oct; 141():86-95. PubMed ID: 28668609 [TBL] [Abstract][Full Text] [Related]
10. Upconverting Nanocarriers Enable Triggered Microtubule Inhibition and Concurrent Ferroptosis Induction for Selective Treatment of Triple-Negative Breast Cancer. Zhu J; Dai P; Liu F; Li Y; Qin Y; Yang Q; Tian R; Fan A; Medeiros SF; Wang Z; Zhao Y Nano Lett; 2020 Sep; 20(9):6235-6245. PubMed ID: 32804509 [TBL] [Abstract][Full Text] [Related]
11. Oxygen Self-Generating Nanoreactor Mediated Ferroptosis Activation and Immunotherapy in Triple-Negative Breast Cancer. Li K; Xu K; He Y; Yang Y; Tan M; Mao Y; Zou Y; Feng Q; Luo Z; Cai K ACS Nano; 2023 Mar; 17(5):4667-4687. PubMed ID: 36861638 [TBL] [Abstract][Full Text] [Related]
12. Fenton reaction-independent ferroptosis therapy via glutathione and iron redox couple sequentially triggered lipid peroxide generator. He YJ; Liu XY; Xing L; Wan X; Chang X; Jiang HL Biomaterials; 2020 May; 241():119911. PubMed ID: 32143060 [TBL] [Abstract][Full Text] [Related]
13. NIR-promoted ferrous ion regeneration enhances ferroptosis for glioblastoma treatment. Xue K; Yang R; An Y; Ding Y; Li S; Miao F; Liu D; Chen D; Tang Q J Control Release; 2024 Apr; 368():595-606. PubMed ID: 38185333 [TBL] [Abstract][Full Text] [Related]
14. A tumor microenvironment responsive nanoplatform with oxidative stress amplification for effective MRI-based visual tumor ferroptosis. Luo S; Ma D; Wei R; Yao W; Pang X; Wang Y; Xu X; Wei X; Guo Y; Jiang X; Yuan Y; Yang R Acta Biomater; 2022 Jan; 138():518-527. PubMed ID: 34775124 [TBL] [Abstract][Full Text] [Related]
15. Photothermal nanozyme-ignited Fenton reaction-independent ferroptosis for breast cancer therapy. Xing L; Liu XY; Zhou TJ; Wan X; Wang Y; Jiang HL J Control Release; 2021 Nov; 339():14-26. PubMed ID: 34547257 [TBL] [Abstract][Full Text] [Related]
16. Enhanced antitumor effect via amplified oxidative stress by near-infrared light-responsive and folate-targeted nanoplatform. Wang S; Chen F; Wu H; Zhang Y; Sun K; Yin Y; Chen J; Hossain AMS; Sun B Nanotechnology; 2021 Jan; 32(3):035102. PubMed ID: 33002884 [TBL] [Abstract][Full Text] [Related]
17. Cyclic catalysis of intratumor Fe Yang J; Ren B; Cai H; Xiong W; Feng J; Fan Q; Li Z; Huang L; Yan C; Li Y; Chen C; Shen Z Biomaterials; 2025 Feb; 313():122793. PubMed ID: 39226655 [TBL] [Abstract][Full Text] [Related]
18. Iron-based nanoparticles for MR imaging-guided ferroptosis in combination with photodynamic therapy to enhance cancer treatment. Chen Q; Ma X; Xie L; Chen W; Xu Z; Song E; Zhu X; Song Y Nanoscale; 2021 Mar; 13(9):4855-4870. PubMed ID: 33624647 [TBL] [Abstract][Full Text] [Related]
19. Amorphous ferric oxide-coating selenium core-shell nanoparticles: a self-preservation Pt(IV) platform for multi-modal cancer therapies through hydrogen peroxide depletion-mediated anti-angiogenesis, apoptosis and ferroptosis. Xu Z; Li Q; Zhang C; Wang P; Xu X; Ran L; Zhang L; Tian G; Zhang G Nanoscale; 2022 Aug; 14(32):11600-11611. PubMed ID: 35861683 [TBL] [Abstract][Full Text] [Related]
20. Pulmonary Delivery of Theranostic Nanoclusters for Lung Cancer Ferroptosis with Enhanced Chemodynamic/Radiation Synergistic Therapy. Li Y; Yang J; Gu G; Guo X; He C; Sun J; Zou H; Wang H; Liu S; Li X; Zhang S; Wang K; Yang L; Jiang Y; Wu L; Sun X Nano Lett; 2022 Feb; 22(3):963-972. PubMed ID: 35073699 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]