Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 36580095)

  • 1. Predicting pathological complete response of neoadjuvant radiotherapy and targeted therapy for soft tissue sarcoma by whole-tumor texture analysis of multisequence MRI imaging.
    Miao L; Cao Y; Zuo L; Zhang H; Guo C; Yang Z; Shi Z; Jiang J; Wang S; Li Y; Wang Y; Xie L; Li M; Lu N
    Eur Radiol; 2023 Jun; 33(6):3984-3994. PubMed ID: 36580095
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of pathological complete response in locally advanced head and neck squamous cell carcinoma treated with neoadjuvant chemo-immunotherapy using volumetric multisequence MRI histogram analysis.
    Liu H; Zhu C; Wang X; Chen X; Li Z; Xian J
    Neuroradiology; 2024 Mar; ():. PubMed ID: 38503986
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MRI-based delta-radiomics predicts pathologic complete response in high-grade soft-tissue sarcoma patients treated with neoadjuvant therapy.
    Peeken JC; Asadpour R; Specht K; Chen EY; Klymenko O; Akinkuoroye V; Hippe DS; Spraker MB; Schaub SK; Dapper H; Knebel C; Mayr NA; Gersing AS; Woodruff HC; Lambin P; Nyflot MJ; Combs SE
    Radiother Oncol; 2021 Nov; 164():73-82. PubMed ID: 34506832
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Predictive value of combination of MRI tumor regression grade and apparent diffusion coefficient for pathological complete remission after neoadjuvant treatment of locally advanced rectal cancer].
    Xu N; Huang FC; Li WL; Luan X; Jiang YM; He B
    Zhonghua Wei Chang Wai Ke Za Zhi; 2021 Apr; 24(4):359-365. PubMed ID: 33878826
    [No Abstract]   [Full Text] [Related]  

  • 5. [Application value of texture analysis of magnetic resonance images in prediction of neoadjuvant chemoradiotherapy efficacy for rectal cancer].
    Shu Z; Fang S; Ding Z; Mao D; Pang P; Gong X
    Zhonghua Wei Chang Wai Ke Za Zhi; 2018 Sep; 21(9):1051-1058. PubMed ID: 30269327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of Machine Learning With Multiparametric Magnetic Resonance Imaging of the Breast for Early Prediction of Response to Neoadjuvant Chemotherapy and Survival Outcomes in Breast Cancer Patients.
    Tahmassebi A; Wengert GJ; Helbich TH; Bago-Horvath Z; Alaei S; Bartsch R; Dubsky P; Baltzer P; Clauser P; Kapetas P; Morris EA; Meyer-Baese A; Pinker K
    Invest Radiol; 2019 Feb; 54(2):110-117. PubMed ID: 30358693
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine learning for prediction of chemoradiation therapy response in rectal cancer using pre-treatment and mid-radiation multi-parametric MRI.
    Shi L; Zhang Y; Nie K; Sun X; Niu T; Yue N; Kwong T; Chang P; Chow D; Chen JH; Su MY
    Magn Reson Imaging; 2019 Sep; 61():33-40. PubMed ID: 31059768
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting the pathological response to chemoradiotherapy of non-mucinous rectal cancer using pretreatment texture features based on intravoxel incoherent motion diffusion-weighted imaging.
    Liu S; Wen L; Hou J; Nie S; Zhou J; Cao F; Lu Q; Qin Y; Fu Y; Yu X
    Abdom Radiol (NY); 2019 Aug; 44(8):2689-2698. PubMed ID: 31030244
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predictive role of diffusion-weighted MRI in the assessment of response to total neoadjuvant therapy in locally advanced rectal cancer.
    Iafrate F; Ciccarelli F; Masci GM; Grasso D; Marruzzo F; De Felice F; Tombolini V; D'Ambrosio G; Magliocca FM; Cortesi E; Catalano C
    Eur Radiol; 2023 Feb; 33(2):854-862. PubMed ID: 35980431
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and multicenter validation of a multiparametric imaging model to predict treatment response in rectal cancer.
    Schurink NW; van Kranen SR; van Griethuysen JJM; Roberti S; Snaebjornsson P; Bakers FCH; de Bie SH; Bosma GPT; Cappendijk VC; Geenen RWF; Neijenhuis PA; Peterson GM; Veeken CJ; Vliegen RFA; Peters FP; Bogveradze N; El Khababi N; Lahaye MJ; Maas M; Beets GL; Beets-Tan RGH; Lambregts DMJ
    Eur Radiol; 2023 Dec; 33(12):8889-8898. PubMed ID: 37452176
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Texture Analysis with 3.0-T MRI for Association of Response to Neoadjuvant Chemotherapy in Breast Cancer.
    Eun NL; Kang D; Son EJ; Park JS; Youk JH; Kim JA; Gweon HM
    Radiology; 2020 Jan; 294(1):31-41. PubMed ID: 31769740
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Develop and validate a radiomics space-time model to predict the pathological complete response in patients undergoing neoadjuvant treatment of rectal cancer: an artificial intelligence model study based on machine learning.
    Peng J; Wang W; Jin H; Qin X; Hou J; Yang Z; Shu Z
    BMC Cancer; 2023 Apr; 23(1):365. PubMed ID: 37085830
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring MR regression patterns in rectal cancer during neoadjuvant radiochemotherapy with daily T2- and diffusion-weighted MRI.
    Bostel T; Dreher C; Wollschläger D; Mayer A; König F; Bickelhaupt S; Schlemmer HP; Huber PE; Sterzing F; Bäumer P; Debus J; Nicolay NH
    Radiat Oncol; 2020 Jul; 15(1):171. PubMed ID: 32653003
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of
    Chodyla M; Demircioglu A; Schaarschmidt BM; Bertram S; Bruckmann NM; Haferkamp J; Li Y; Bauer S; Podleska L; Rischpler C; Forsting M; Herrmann K; Umutlu L; Grueneisen J
    J Nucl Med; 2021 Mar; 62(3):348-353. PubMed ID: 32737246
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Treatment effect prediction for sarcoma patients treated with preoperative radiotherapy using radiomics features from longitudinal diffusion-weighted MRIs.
    Gao Y; Kalbasi A; Hsu W; Ruan D; Fu J; Shao J; Cao M; Wang C; Eilber FC; Bernthal N; Bukata S; Dry SM; Nelson SD; Kamrava M; Lewis J; Low DA; Steinberg M; Hu P; Yang Y
    Phys Med Biol; 2020 Aug; 65(17):175006. PubMed ID: 32554891
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative synthetic MRI for predicting locally advanced rectal cancer response to neoadjuvant chemoradiotherapy.
    Lian S; Liu H; Meng T; Ma L; Zeng W; Xie C
    Eur Radiol; 2023 Mar; 33(3):1737-1745. PubMed ID: 36380196
    [TBL] [Abstract][Full Text] [Related]  

  • 17. T
    Crombé A; Périer C; Kind M; De Senneville BD; Le Loarer F; Italiano A; Buy X; Saut O
    J Magn Reson Imaging; 2019 Aug; 50(2):497-510. PubMed ID: 30569552
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Apparent Diffusion Coefficient Predicts Pathology Complete Response of Rectal Cancer Treated with Neoadjuvant Chemoradiotherapy.
    Chen YG; Chen MQ; Guo YY; Li SC; Wu JX; Xu BH
    PLoS One; 2016; 11(4):e0153944. PubMed ID: 27100991
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multi-modal radiomics model to predict treatment response to neoadjuvant chemotherapy for locally advanced rectal cancer.
    Li ZY; Wang XD; Li M; Liu XJ; Ye Z; Song B; Yuan F; Yuan Y; Xia CC; Zhang X; Li Q
    World J Gastroenterol; 2020 May; 26(19):2388-2402. PubMed ID: 32476800
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Complete Response Evaluation of Locally Advanced Rectal Cancer to Neoadjuvant Chemoradiotherapy Using Textural Features Obtained from T2 Weighted Imaging and ADC Maps.
    Azamat S; Karaman Ş; Azamat IF; Ertaş G; Kulle CB; Keskin M; Sakin RND; Bakır B; Oral EN; Kartal MG
    Curr Med Imaging; 2022; 18(10):1061-1069. PubMed ID: 35240976
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.