These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 36580114)
1. A Flexible Tribotronic Artificial Synapse with Bioinspired Neurosensory Behavior. Zeng J; Zhao J; Bu T; Liu G; Qi Y; Zhou H; Dong S; Zhang C Nanomicro Lett; 2022 Dec; 15(1):18. PubMed ID: 36580114 [TBL] [Abstract][Full Text] [Related]
2. Flexible Organic Tribotronic Transistor for Pressure and Magnetic Sensing. Zhao J; Guo H; Pang YK; Xi F; Yang ZW; Liu G; Guo T; Dong G; Zhang C; Wang ZL ACS Nano; 2017 Nov; 11(11):11566-11573. PubMed ID: 29099579 [TBL] [Abstract][Full Text] [Related]
3. Flexible and Transparent Artificial Synapse Devices Based on Thin-Film Transistors with Nanometer Thickness. Dai C; Huo C; Qi S; Dai M; Webster T; Xiao H Int J Nanomedicine; 2020; 15():8037-8043. PubMed ID: 33116516 [TBL] [Abstract][Full Text] [Related]
4. Theoretical Study of Triboelectric-Potential Gated/Driven Metal-Oxide-Semiconductor Field-Effect Transistor. Peng W; Yu R; He Y; Wang ZL ACS Nano; 2016 Apr; 10(4):4395-402. PubMed ID: 27077327 [TBL] [Abstract][Full Text] [Related]
5. Intrinsically Stretchable Organic-Tribotronic-Transistor for Tactile Sensing. Zhao J; Bu T; Zhang X; Pang Y; Li W; Zhang Z; Liu G; Wang ZL; Zhang C Research (Wash D C); 2020; 2020():1398903. PubMed ID: 32676585 [TBL] [Abstract][Full Text] [Related]
6. Artificial Synapses Based on in-Plane Gate Organic Electrochemical Transistors. Qian C; Sun J; Kong LA; Gou G; Yang J; He J; Gao Y; Wan Q ACS Appl Mater Interfaces; 2016 Oct; 8(39):26169-26175. PubMed ID: 27608136 [TBL] [Abstract][Full Text] [Related]
7. Flexible Carbon Nanotube Synaptic Transistor for Neurological Electronic Skin Applications. Wan H; Cao Y; Lo LW; Zhao J; SepĂșlveda N; Wang C ACS Nano; 2020 Aug; 14(8):10402-10412. PubMed ID: 32678612 [TBL] [Abstract][Full Text] [Related]
8. Flexible Artificial Synapses with a Biocompatible Maltose-Ascorbic Acid Electrolyte Gate for Neuromorphic Computing. Qin W; Kang BH; Kim HJ ACS Appl Mater Interfaces; 2021 Jul; 13(29):34597-34604. PubMed ID: 34279076 [TBL] [Abstract][Full Text] [Related]
9. A Degradable Tribotronic Transistor for Self-Destructing Intelligent Package e-Labels. Zhou W; Zeng J; Dong Z; Xiao C; Gong L; Fan B; Li Y; Chen Y; Zhao J; Zhang C ACS Appl Mater Interfaces; 2024 Jun; 16(23):30255-30263. PubMed ID: 38813772 [TBL] [Abstract][Full Text] [Related]
10. Triboelectric Potential Powered High-Performance Organic Transistor Array. Wei Y; Liu W; Yu J; Li Y; Wang Y; Huo Z; Cheng L; Feng Z; Sun J; Sun Q; Wang ZL ACS Nano; 2022 Nov; 16(11):19199-19209. PubMed ID: 36354955 [TBL] [Abstract][Full Text] [Related]
11. Tactile tribotronic reconfigurable p-n junctions for artificial synapses. Jia M; Guo P; Wang W; Yu A; Zhang Y; Wang ZL; Zhai J Sci Bull (Beijing); 2022 Apr; 67(8):803-812. PubMed ID: 36546233 [TBL] [Abstract][Full Text] [Related]
12. Artificial Synapses Emulated by an Electrolyte-Gated Tungsten-Oxide Transistor. Yang JT; Ge C; Du JY; Huang HY; He M; Wang C; Lu HB; Yang GZ; Jin KJ Adv Mater; 2018 Jul; ():e1801548. PubMed ID: 29974526 [TBL] [Abstract][Full Text] [Related]
13. Recent Process of Flexible Transistor-Structured Memory. Ni Y; Wang Y; Xu W Small; 2021 Mar; 17(9):e1905332. PubMed ID: 32243063 [TBL] [Abstract][Full Text] [Related]
14. Ultralow-power flexible transparent carbon nanotube synaptic transistors for emotional memory. Wang Y; Huang W; Zhang Z; Fan L; Huang Q; Wang J; Zhang Y; Zhang M Nanoscale; 2021 Jul; 13(26):11360-11369. PubMed ID: 34096562 [TBL] [Abstract][Full Text] [Related]
15. Tribotronic Transistor Array as an Active Tactile Sensing System. Yang ZW; Pang Y; Zhang L; Lu C; Chen J; Zhou T; Zhang C; Wang ZL ACS Nano; 2016 Dec; 10(12):10912-10920. PubMed ID: 28024389 [TBL] [Abstract][Full Text] [Related]
16. Mechanosensation-Active Matrix Based on Direct-Contact Tribotronic Planar Graphene Transistor Array. Meng Y; Zhao J; Yang X; Zhao C; Qin S; Cho JH; Zhang C; Sun Q; Wang ZL ACS Nano; 2018 Sep; 12(9):9381-9389. PubMed ID: 30183252 [TBL] [Abstract][Full Text] [Related]
17. Contact-electrification-activated artificial afferents at femtojoule energy. Yu J; Gao G; Huang J; Yang X; Han J; Zhang H; Chen Y; Zhao C; Sun Q; Wang ZL Nat Commun; 2021 Mar; 12(1):1581. PubMed ID: 33707420 [TBL] [Abstract][Full Text] [Related]
18. Fully Printed All-Solid-State Organic Flexible Artificial Synapse for Neuromorphic Computing. Liu Q; Liu Y; Li J; Lau C; Wu F; Zhang A; Li Z; Chen M; Fu H; Draper J; Cao X; Zhou C ACS Appl Mater Interfaces; 2019 May; 11(18):16749-16757. PubMed ID: 31025562 [TBL] [Abstract][Full Text] [Related]
19. Short Communication: An Updated Design to Implement Artificial Neuron Synaptic Behaviors in One Device with a Control Gate. Qi S; Hu Y; Dai C; Chen P; Wu Z; Webster TJ; Dai M Int J Nanomedicine; 2020; 15():6239-6245. PubMed ID: 32904074 [TBL] [Abstract][Full Text] [Related]
20. Artificial Synapses with Short- and Long-Term Memory for Spiking Neural Networks Based on Renewable Materials. Park Y; Lee JS ACS Nano; 2017 Sep; 11(9):8962-8969. PubMed ID: 28837313 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]