These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 36580245)
1. Particle drift simulation from mesotrione and rimsulfuron plus thifensulfuron-methyl mixture through two nozzle types to field and vegetable crops. Brankov M; Alves GS; Vieira BC; Zaric M; Vukoja B; Houston T; Kruger GR Environ Sci Pollut Res Int; 2023 Mar; 30(13):38226-38238. PubMed ID: 36580245 [TBL] [Abstract][Full Text] [Related]
2. Response of Amaranthus spp. following exposure to sublethal herbicide rates via spray particle drift. Vieira BC; Luck JD; Amundsen KL; Gaines TA; Werle R; Kruger GR PLoS One; 2019; 14(7):e0220014. PubMed ID: 31318947 [TBL] [Abstract][Full Text] [Related]
3. Field evaluation of spray drift and nontargeted soybean injury from unmanned aerial spraying system herbicide application under acceptable operation conditions. Huang Z; Wang C; Li Y; Zhang H; Zeng A; He X Pest Manag Sci; 2023 Mar; 79(3):1140-1153. PubMed ID: 36349383 [TBL] [Abstract][Full Text] [Related]
5. Characterization of field-scale spray drift deposition and non-target plant biological sensitivity: a corn herbicide (mesotrione/s-metolochlor) case study. Perkins DB; Abi-Akar F; Goodwin G; Brain RA Pest Manag Sci; 2022 Jul; 78(7):3193-3206. PubMed ID: 35488378 [TBL] [Abstract][Full Text] [Related]
6. Spray drift potential of dicamba plus S-metolachlor formulations. Canella Vieira B; Sousa Alves G; Vukoja B; Velho V; Zaric M; Houston TW; Fritz BK; Kruger GR Pest Manag Sci; 2022 Apr; 78(4):1538-1546. PubMed ID: 34964546 [TBL] [Abstract][Full Text] [Related]
7. Development and assessment of a novel servo-controlled spraying system for real time adjustment of the orientation angle of the nozzles of a boom sprayer. Bayat A; İtmeç M; Özlüoymak ÖB Pest Manag Sci; 2023 Nov; 79(11):4439-4450. PubMed ID: 37405577 [TBL] [Abstract][Full Text] [Related]
8. Direct and indirect drift assessment means. Part 4: a comparative study. Nuyttens D; Baetens K; De Schampheleire M; Sonck B Commun Agric Appl Biol Sci; 2008; 73(4):769-74. PubMed ID: 19226827 [TBL] [Abstract][Full Text] [Related]
9. DRIFT POTENTIAL OF TILTED SHIELDED ROTARY ATOMISERS BASED ON WIND TUNNEL MEASUREMENTS. Salah SO; Massinon M; De Cock N; Schiffers B; Lebeau F Commun Agric Appl Biol Sci; 2015; 80(3):303-12. PubMed ID: 27141728 [TBL] [Abstract][Full Text] [Related]
10. Effect of the entrained air and initial droplet velocity on the release height parameter of a Gaussian spray drift model. Stainier C; Destain MF; Schiffers B; Lebeau F Commun Agric Appl Biol Sci; 2006; 71(2 Pt A):197-200. PubMed ID: 17390793 [TBL] [Abstract][Full Text] [Related]
11. Determining the drift potential of Venturi nozzles compared with standard nozzles across three insecticide spray solutions in a wind tunnel. Ferguson JC; Chechetto RG; O'Donnell CC; Dorr GJ; Moore JH; Baker GJ; Powis KJ; Hewitt AJ Pest Manag Sci; 2016 Aug; 72(8):1460-6. PubMed ID: 26732308 [TBL] [Abstract][Full Text] [Related]
12. Spray drift deposition comparison of fluorimetry and analytical confirmation techniques. Szarka AZ; Kruger GR; Golus J; Rodgers C; Perkins D; Brain RA Pest Manag Sci; 2021 Sep; 77(9):4192-4199. PubMed ID: 33942978 [TBL] [Abstract][Full Text] [Related]
13. Spray particle drift mitigation using field corn (Zea mays L.) as a drift barrier. Vieira BC; Butts TR; Rodrigues AO; Golus JA; Schroeder K; Kruger GR Pest Manag Sci; 2018 Apr; ():. PubMed ID: 29688591 [TBL] [Abstract][Full Text] [Related]
14. Characterization of 4-hydroxyphenylpyruvate dioxygenases, inhibition by herbicides and engineering for herbicide tolerance in crops. Hawkes TR; Langford MP; Viner R; Blain RE; Callaghan FM; Mackay EA; Hogg BV; Singh S; Dale RP Pestic Biochem Physiol; 2019 May; 156():9-28. PubMed ID: 31027586 [TBL] [Abstract][Full Text] [Related]
15. Evaluationof compact air-induction flat fan nozzles for herbicide applications: Spray drift and biological efficacy. Wang S; Li X; Nuyttens D; Zhang L; Liu Y; Li X Front Plant Sci; 2023; 14():1018626. PubMed ID: 36818846 [TBL] [Abstract][Full Text] [Related]
16. Assessment of spray drift potential reduction for hollow-cone nozzles: Part 1. Classification using indirect methods. Torrent X; Gregorio E; Douzals JP; Tinet C; Rosell-Polo JR; Planas S Sci Total Environ; 2019 Nov; 692():1322-1333. PubMed ID: 31248581 [TBL] [Abstract][Full Text] [Related]
17. Direct and indirect drift assessment means. Part 2: wind tunnel experiments. Nuyttens D; De Schampheleire M; Baetens K; Sonck B Commun Agric Appl Biol Sci; 2008; 73(4):757-61. PubMed ID: 19226825 [TBL] [Abstract][Full Text] [Related]
18. Direct and indirect drift assessment means. Part 1: PDPA laser based droplet characterisation. Nuyttens D; Baetens K; De Schampheleire M; Dekeyser D; Sonck B Commun Agric Appl Biol Sci; 2008; 73(4):749-56. PubMed ID: 19226824 [TBL] [Abstract][Full Text] [Related]
19. Off-target loss in ornamental nurseries with different spray techniques. Zhu H; Derksen RC; Krause CR; Zondag RH Commun Agric Appl Biol Sci; 2009; 74(1):25-36. PubMed ID: 20218508 [TBL] [Abstract][Full Text] [Related]
20. Boom sprayer optimizations for bed-grown carrots at different growth stages based on spray distribution and droplet characteristics. Zwertvaegher I; Lamare A; Douzals JP; Balsari P; Marucco P; Grella M; Caffini A; Mylonas N; Dekeyser D; Foqué D; Nuyttens D Pest Manag Sci; 2022 Apr; 78(4):1729-1739. PubMed ID: 34995010 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]