These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 36580245)
21. Evaluating the effects of herbicide drift on nontarget terrestrial plants: A case study with mesotrione. Brain RA; Perine J; Cooke C; Ellis CB; Harrington P; Lane A; O'Sullivan C; Ledson M Environ Toxicol Chem; 2017 Sep; 36(9):2465-2475. PubMed ID: 28262983 [TBL] [Abstract][Full Text] [Related]
22. Spray droplet size, drift potential, and risks to nontarget organisms from aerially applied glyphosate for coca control in Colombia. Hewitt AJ; Solomon KR; Marshall EJ J Toxicol Environ Health A; 2009; 72(15-16):921-9. PubMed ID: 19672760 [TBL] [Abstract][Full Text] [Related]
23. Direct and indirect drift assessment means. Part 3: field drift experiments. Nuyttens D; De Schampheleire M; Baetens K; Dekeyser D; Sonck B Commun Agric Appl Biol Sci; 2008; 73(4):763-7. PubMed ID: 19226826 [TBL] [Abstract][Full Text] [Related]
24. Determination of spray drift and buffer zones in 3D crops using the ISO standard and new LiDAR methodologies. Torrent X; Gregorio E; Rosell-Polo JR; Arnó J; Peris M; van de Zande JC; Planas S Sci Total Environ; 2020 Apr; 714():136666. PubMed ID: 31986387 [TBL] [Abstract][Full Text] [Related]
25. Soil activity and persistence of sulcotrione and mesotrione. Maeghe L; Desmet EM; Bulcke R Commun Agric Appl Biol Sci; 2004; 69(3):41-8. PubMed ID: 15759393 [TBL] [Abstract][Full Text] [Related]
26. Droplet size and physicochemical property effects on herbicide efficacy of pre-emergence herbicides in soybean (Glycine max (L.) Merr). Urach Ferreira PH; Ferguson JC; Reynolds DB; Kruger GR; Irby JT Pest Manag Sci; 2020 Feb; 76(2):737-746. PubMed ID: 31386276 [TBL] [Abstract][Full Text] [Related]
27. Sensitivity of locally naturalized Panicum species to HPPD- and ALS-inhibiting herbicides in maize. De Cauwer B; Geeroms T; Claerhout S; Reheul D; Bulcke R Commun Agric Appl Biol Sci; 2012; 77(3):353-61. PubMed ID: 23878990 [TBL] [Abstract][Full Text] [Related]
28. Effect of nozzle selection on deposition of thiamethoxam in Actara® spray drift and implications for off-field risk assessment. Perine J; Anderson JC; Kruger GR; Abi-Akar F; Overmyer J Sci Total Environ; 2021 Jun; 772():144808. PubMed ID: 33770886 [TBL] [Abstract][Full Text] [Related]
29. Physicochemical properties, droplet size and volatility of dicamba with herbicides and adjuvants on tank-mixture. Ferreira PHU; Thiesen LV; Pelegrini G; Ramos MFT; Pinto MMD; da Costa Ferreira M Sci Rep; 2020 Nov; 10(1):18833. PubMed ID: 33139789 [TBL] [Abstract][Full Text] [Related]
30. Effect of tank mixed adjuvants on the drift potential of phenmedipham formulations. Stainier C; Destain MF; Schiffers B; Lebeau F Commun Agric Appl Biol Sci; 2005; 70(4):979-87. PubMed ID: 16628946 [TBL] [Abstract][Full Text] [Related]
32. Buffer zones for reducing pesticide drift to ditches and risks to aquatic organisms. de Snoo GR; de Wit PJ Ecotoxicol Environ Saf; 1998 Sep; 41(1):112-8. PubMed ID: 9756699 [TBL] [Abstract][Full Text] [Related]
33. Spray Drift from a Conventional Axial Fan Airblast Sprayer in a Modern Orchard Work Environment. Kasner EJ; Fenske RA; Hoheisel GA; Galvin K; Blanco MN; Seto EYW; Yost MG Ann Work Expo Health; 2018 Nov; 62(9):1134-1146. PubMed ID: 30346469 [TBL] [Abstract][Full Text] [Related]
34. Herbicide spray drift from ground and aerial applications: Implications for potential pollinator foraging sources. Butts TR; Fritz BK; Kouame KB; Norsworthy JK; Barber LT; Ross WJ; Lorenz GM; Thrash BC; Bateman NR; Adamczyk JJ Sci Rep; 2022 Oct; 12(1):18017. PubMed ID: 36289439 [TBL] [Abstract][Full Text] [Related]
35. Lethal and sublethal effects of five common herbicides on the wolf spider, Pardosa milvina (Araneae: Lycosidae). Ward W; Heinly B; Preston J; Johnson C; Sweger A; Persons M Ecotoxicology; 2022 Dec; 31(10):1565-1582. PubMed ID: 36462130 [TBL] [Abstract][Full Text] [Related]
36. Validation of the AGDISP model for predicting airborne atrazine spray drift: A South African ground application case study. Nsibande SA; Dabrowski JM; van der Walt E; Venter A; Forbes PB Chemosphere; 2015 Nov; 138():454-61. PubMed ID: 26171732 [TBL] [Abstract][Full Text] [Related]
37. Field evaluation of spray drift and environmental impact using an agricultural unmanned aerial vehicle (UAV) sprayer. Wang G; Han Y; Li X; Andaloro J; Chen P; Hoffmann WC; Han X; Chen S; Lan Y Sci Total Environ; 2020 Oct; 737():139793. PubMed ID: 32526578 [TBL] [Abstract][Full Text] [Related]
38. Agrochemical spray drift; assessment and mitigation--a review. Felsot AS; Unsworth JB; Linders JB; Roberts G; Rautman D; Harris C; Carazo E J Environ Sci Health B; 2011; 46(1):1-23. PubMed ID: 20981606 [TBL] [Abstract][Full Text] [Related]
39. A simple probabilistic estimation of spray drift--factors determining spray drift and development of a model. Wang M; Rautmann D Environ Toxicol Chem; 2008 Dec; 27(12):2617-26. PubMed ID: 18699705 [TBL] [Abstract][Full Text] [Related]
40. P450s mediated enhanced herbicide metabolism involved in the thifensulfuron-methyl resistance in Ipomoea purpurea L. Cao S; Zhao B; Zou Y; Sun Z; Zhang H; Wei S; Ji M Pestic Biochem Physiol; 2022 Jun; 184():105111. PubMed ID: 35715050 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]