These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
213 related articles for article (PubMed ID: 36580372)
41. A chemically stabilized sulfur cathode for lean electrolyte lithium sulfur batteries. Luo C; Hu E; Gaskell KJ; Fan X; Gao T; Cui C; Ghose S; Yang XQ; Wang C Proc Natl Acad Sci U S A; 2020 Jun; 117(26):14712-14720. PubMed ID: 32554498 [TBL] [Abstract][Full Text] [Related]
42. Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries. Fu KK; Gong Y; Dai J; Gong A; Han X; Yao Y; Wang C; Wang Y; Chen Y; Yan C; Li Y; Wachsman ED; Hu L Proc Natl Acad Sci U S A; 2016 Jun; 113(26):7094-9. PubMed ID: 27307440 [TBL] [Abstract][Full Text] [Related]
43. Synergetic Effect of Li-Ion Concentration and Triple Doping on Ionic Conductivity of Li Nguyen MH; Park S Nanomaterials (Basel); 2022 Aug; 12(17):. PubMed ID: 36079983 [TBL] [Abstract][Full Text] [Related]
44. High-performance all-solid-state batteries enabled by salt bonding to perovskite in poly(ethylene oxide). Xu H; Chien PH; Shi J; Li Y; Wu N; Liu Y; Hu YY; Goodenough JB Proc Natl Acad Sci U S A; 2019 Sep; 116(38):18815-18821. PubMed ID: 31467166 [TBL] [Abstract][Full Text] [Related]
45. Space-Charge Effects at the Li Brogioli D; Langer F; Kun R; La Mantia F ACS Appl Mater Interfaces; 2019 Mar; 11(12):11999-12007. PubMed ID: 30821956 [TBL] [Abstract][Full Text] [Related]
46. Method Using Water-Based Solvent to Prepare Li Huang X; Lu Y; Jin J; Gu S; Xiu T; Song Z; Badding ME; Wen Z ACS Appl Mater Interfaces; 2018 May; 10(20):17147-17155. PubMed ID: 29701463 [TBL] [Abstract][Full Text] [Related]
47. All-Solid-State Lithium-Ion Batteries with Oxide/Sulfide Composite Electrolytes. Park YS; Lee JM; Yi EJ; Moon JW; Hwang H Materials (Basel); 2021 Apr; 14(8):. PubMed ID: 33923542 [TBL] [Abstract][Full Text] [Related]
48. Unlocking the hidden chemical space in cubic-phase garnet solid electrolyte for efficient quasi-all-solid-state lithium batteries. Jung SK; Gwon H; Kim H; Yoon G; Shin D; Hong J; Jung C; Kim JS Nat Commun; 2022 Dec; 13(1):7638. PubMed ID: 36496481 [TBL] [Abstract][Full Text] [Related]
49. Fluorine-Doped Li Liu J; Yin F; Mao Y; Sun C ACS Appl Mater Interfaces; 2024 Jun; 16(24):31191-31200. PubMed ID: 38842130 [TBL] [Abstract][Full Text] [Related]
50. Thermodynamics as a Driving Factor of LiCoO Morozov AV; Paik H; Boev AO; Aksyonov DA; Lipovskikh SA; Stevenson KJ; Rupp JLM; Abakumov AM ACS Appl Mater Interfaces; 2022 Sep; 14(35):39907-39916. PubMed ID: 36007961 [TBL] [Abstract][Full Text] [Related]
51. Enabling "lithium-free" manufacturing of pure lithium metal solid-state batteries through in situ plating. Wang MJ; Carmona E; Gupta A; Albertus P; Sakamoto J Nat Commun; 2020 Oct; 11(1):5201. PubMed ID: 33060571 [TBL] [Abstract][Full Text] [Related]
52. Electrochemical Characteristics of a Polymer/Garnet Trilayer Composite Electrolyte for Solid-State Lithium-Metal Batteries. Walle KZ; Musuvadhi Babulal L; Wu SH; Chien WC; Jose R; Lue SJ; Chang JK; Yang CC ACS Appl Mater Interfaces; 2021 Jan; 13(2):2507-2520. PubMed ID: 33406841 [TBL] [Abstract][Full Text] [Related]
53. Scalable Freeze-Tape-Casting Fabrication and Pore Structure Analysis of 3D LLZO Solid-State Electrolytes. Shen H; Yi E; Heywood S; Parkinson DY; Chen G; Tamura N; Sofie S; Chen K; Doeff MM ACS Appl Mater Interfaces; 2020 Jan; 12(3):3494-3501. PubMed ID: 31859476 [TBL] [Abstract][Full Text] [Related]
54. Developing Preparation Craft Platform for Solid Electrolytes Containing Volatile Components: Experimental Study of Competition between Lithium Loss and Densification in Li Huang X; Tang J; Zhou Y; Rui K; Ao X; Yang Y; Tian B ACS Appl Mater Interfaces; 2022 Jul; ():. PubMed ID: 35839326 [TBL] [Abstract][Full Text] [Related]
55. Hybrid Lithium-Sulfur Batteries with a Solid Electrolyte Membrane and Lithium Polysulfide Catholyte. Yu X; Bi Z; Zhao F; Manthiram A ACS Appl Mater Interfaces; 2015 Aug; 7(30):16625-31. PubMed ID: 26161547 [TBL] [Abstract][Full Text] [Related]
56. Dual-Doped Cubic Garnet Solid Electrolytes with Superior Air Stability. Abrha LH; Hagos TT; Nikodimos Y; Bezabh HK; Berhe GB; Hagos TM; Huang CJ; Tegegne WA; Jiang SK; Weldeyohannes HH; Wu SH; Su WN; Hwang BJ ACS Appl Mater Interfaces; 2020 Jun; 12(23):25709-25717. PubMed ID: 32407073 [TBL] [Abstract][Full Text] [Related]
57. Excellent Stability of Ga-Doped Garnet Electrolyte against Li Metal Anode Li J; Luo H; Liu K; Zhang J; Zhai H; Su X; Wu J; Tang X; Tan G ACS Appl Mater Interfaces; 2023 Feb; 15(5):7165-7174. PubMed ID: 36701379 [TBL] [Abstract][Full Text] [Related]
58. 12.6 μm-Thick Asymmetric Composite Electrolyte with Superior Interfacial Stability for Solid-State Lithium-Metal Batteries. Zhang Z; Gou J; Cui K; Zhang X; Yao Y; Wang S; Wang H Nanomicro Lett; 2024 Apr; 16(1):181. PubMed ID: 38668771 [TBL] [Abstract][Full Text] [Related]
59. Thermal Recovery of the Electrochemically Degraded LiCoO Ihrig M; Kuo LY; Lobe S; Laptev AM; Lin CA; Tu CH; Ye R; Kaghazchi P; Cressa L; Eswara S; Lin SK; Guillon O; Fattakhova-Rohlfing D; Finsterbusch M ACS Appl Mater Interfaces; 2023 Jan; 15(3):4101-4112. PubMed ID: 36647588 [TBL] [Abstract][Full Text] [Related]
60. Investigating the all-solid-state batteries based on lithium garnets and a high potential cathode - LiMn Hänsel C; Afyon S; Rupp JL Nanoscale; 2016 Nov; 8(43):18412-18420. PubMed ID: 27774560 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]