BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 36580433)

  • 1. Horseradish Peroxidase Catalyzed Silk-Prefoldin Composite Hydrogel Networks.
    Sahoo JK; Xu D; Falcucci T; Choi J; Hasturk O; Clark DS; Kaplan DL
    ACS Appl Bio Mater; 2023 Jan; 6(1):203-208. PubMed ID: 36580433
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular and macro-scale analysis of enzyme-crosslinked silk hydrogels for rational biomaterial design.
    McGill M; Coburn JM; Partlow BP; Mu X; Kaplan DL
    Acta Biomater; 2017 Nov; 63():76-84. PubMed ID: 28919509
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enzymatically crosslinked silk-hyaluronic acid hydrogels.
    Raia NR; Partlow BP; McGill M; Kimmerling EP; Ghezzi CE; Kaplan DL
    Biomaterials; 2017 Jul; 131():58-67. PubMed ID: 28376366
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Silk degumming time controls horseradish peroxidase-catalyzed hydrogel properties.
    Sahoo JK; Choi J; Hasturk O; Laubach I; Descoteaux ML; Mosurkal S; Wang B; Zhang N; Kaplan DL
    Biomater Sci; 2020 Jul; 8(15):4176-4185. PubMed ID: 32608410
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzyme-Mediated Conjugation of Peptides to Silk Fibroin for Facile Hydrogel Functionalization.
    McGill M; Grant JM; Kaplan DL
    Ann Biomed Eng; 2020 Jul; 48(7):1905-1915. PubMed ID: 32314301
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparative investigation of Bombyx mori silk fibroin hydrogels generated by chemical and enzymatic cross-linking.
    Chirila TV; Suzuki S; Papolla C
    Biotechnol Appl Biochem; 2017 Nov; 64(6):771-781. PubMed ID: 28220960
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomaterials from ultrasonication-induced silk fibroin-hyaluronic acid hydrogels.
    Hu X; Lu Q; Sun L; Cebe P; Wang X; Zhang X; Kaplan DL
    Biomacromolecules; 2010 Nov; 11(11):3178-88. PubMed ID: 20942397
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of pH and Glucose Responsive Silk Fibroin Hydrogels.
    Tao X; Jiang F; Cheng K; Qi Z; Yadavalli VK; Lu S
    Int J Mol Sci; 2021 Jul; 22(13):. PubMed ID: 34281160
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Silk protein-based hydrogels: Promising advanced materials for biomedical applications.
    Kapoor S; Kundu SC
    Acta Biomater; 2016 Feb; 31():17-32. PubMed ID: 26602821
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Construction of a composite hydrogel of silk sericin via horseradish peroxidase-catalyzed graft polymerization of poly-PEGDMA.
    Hu H; Wang L; Xu B; Wang P; Yuan J; Yu Y; Wang Q
    J Biomed Mater Res B Appl Biomater; 2020 Aug; 108(6):2643-2655. PubMed ID: 32144891
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Processing silk hydrogel and its applications in biomedical materials.
    Wang HY; Zhang YQ
    Biotechnol Prog; 2015; 31(3):630-40. PubMed ID: 25740113
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly elastomeric photocurable silk hydrogels.
    Kuang D; Jiang F; Wu F; Kaur K; Ghosh S; Kundu SC; Lu S
    Int J Biol Macromol; 2019 Aug; 134():838-845. PubMed ID: 31103592
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Silk Hydrogels Crosslinked by the Fenton Reaction.
    Choi J; McGill M; Raia NR; Hasturk O; Kaplan DL
    Adv Healthc Mater; 2019 Sep; 8(17):e1900644. PubMed ID: 31343117
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Superb Silk Hydrogels with High Adaptability, Bioactivity, and Versatility Enabled by Photo-Cross-Linking.
    Huang R; Hua J; Ru M; Yu M; Wang L; Huang Y; Yan S; Zhang Q; Xu W
    ACS Nano; 2024 Jun; 18(23):15312-15325. PubMed ID: 38809601
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Charge-Modulated Accessibility of Tyrosine Residues for Silk-Elastin Copolymer Cross-Linking.
    Gonzalez-Obeso C; Backlund FG; Kaplan DL
    Biomacromolecules; 2022 Mar; 23(3):760-765. PubMed ID: 35113522
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phenol red-silk tyrosine cross-linked hydrogels.
    Sundarakrishnan A; Herrero Acero E; Coburn J; Chwalek K; Partlow B; Kaplan DL
    Acta Biomater; 2016 Sep; 42():102-113. PubMed ID: 27345138
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of Silk Fibroin/Gellan Gum Hydrogels with Controlled Molecular Weight through Silk Fibroin Hydrolysis for Tissue Engineering Application.
    Park S; Kim SI; Choi JH; Kim SE; Choe SH; Son Y; Kang TW; Song JE; Khang G
    Molecules; 2023 Jul; 28(13):. PubMed ID: 37446884
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enzymatically crosslinked silk and silk-gelatin hydrogels with tunable gelation kinetics, mechanical properties and bioactivity for cell culture and encapsulation.
    Hasturk O; Jordan KE; Choi J; Kaplan DL
    Biomaterials; 2020 Feb; 232():119720. PubMed ID: 31896515
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Silk fibroin/collagen protein hybrid cell-encapsulating hydrogels with tunable gelation and improved physical and biological properties.
    Buitrago JO; Patel KD; El-Fiqi A; Lee JH; Kundu B; Lee HH; Kim HW
    Acta Biomater; 2018 Mar; 69():218-233. PubMed ID: 29410166
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Silk fibroin/carboxymethyl chitosan hydrogel with tunable biomechanical properties has application potential as cartilage scaffold.
    Li T; Song X; Weng C; Wang X; Gu L; Gong X; Wei Q; Duan X; Yang L; Chen C
    Int J Biol Macromol; 2019 Sep; 137():382-391. PubMed ID: 31271796
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.