These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 36580448)

  • 1. Development of hidden Markov modeling method for molecular orientations and structure estimation from high-speed atomic force microscopy time-series images.
    Ogane T; Noshiro D; Ando T; Yamashita A; Sugita Y; Matsunaga Y
    PLoS Comput Biol; 2022 Dec; 18(12):e1010384. PubMed ID: 36580448
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reconstruction of low-resolution molecular structures from simulated atomic force microscopy images.
    Dasgupta B; Miyashita O; Tama F
    Biochim Biophys Acta Gen Subj; 2020 Feb; 1864(2):129420. PubMed ID: 31472175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flexible Fitting of Biomolecular Structures to Atomic Force Microscopy Images via Biased Molecular Simulations.
    Niina T; Fuchigami S; Takada S
    J Chem Theory Comput; 2020 Feb; 16(2):1349-1358. PubMed ID: 31909999
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-molecule imaging of dynamic motions of biomolecules in DNA origami nanostructures using high-speed atomic force microscopy.
    Endo M; Sugiyama H
    Acc Chem Res; 2014 Jun; 47(6):1645-53. PubMed ID: 24601497
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling Conformational Transitions of Biomolecules from Atomic Force Microscopy Images using Normal Mode Analysis.
    Wu X; Miyashita O; Tama F
    J Phys Chem B; 2024 Oct; 128(39):9363-9372. PubMed ID: 39319845
    [TBL] [Abstract][Full Text] [Related]  

  • 6. End-to-end differentiable blind tip reconstruction for noisy atomic force microscopy images.
    Matsunaga Y; Fuchigami S; Ogane T; Takada S
    Sci Rep; 2023 Jan; 13(1):129. PubMed ID: 36599879
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-speed atomic force microscopy: imaging and force spectroscopy.
    Eghiaian F; Rico F; Colom A; Casuso I; Scheuring S
    FEBS Lett; 2014 Oct; 588(19):3631-8. PubMed ID: 24937145
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-speed near-field fluorescence microscopy combined with high-speed atomic force microscopy for biological studies.
    Umakoshi T; Fukuda S; Iino R; Uchihashi T; Ando T
    Biochim Biophys Acta Gen Subj; 2020 Feb; 1864(2):129325. PubMed ID: 30890438
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acquisition and processing of high-speed atomic force microscopy videos for single amyloid aggregate observation.
    Watanabe-Nakayama T; Ono K
    Methods; 2022 Jan; 197():4-12. PubMed ID: 34107352
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An ultra-wide scanner for large-area high-speed atomic force microscopy with megapixel resolution.
    Marchesi A; Umeda K; Komekawa T; Matsubara T; Flechsig H; Ando T; Watanabe S; Kodera N; Franz CM
    Sci Rep; 2021 Jun; 11(1):13003. PubMed ID: 34155261
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inferring Conformational State of Myosin Motor in an Atomic Force Microscopy Image
    Fuchigami S; Takada S
    Front Mol Biosci; 2022; 9():882989. PubMed ID: 35573735
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Applications of high-speed atomic force microscopy to real-time visualization of dynamic biomolecular processes.
    Uchihashi T; Scheuring S
    Biochim Biophys Acta Gen Subj; 2018 Feb; 1862(2):229-240. PubMed ID: 28716648
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rigid-body fitting to atomic force microscopy images for inferring probe shape and biomolecular structure.
    Niina T; Matsunaga Y; Takada S
    PLoS Comput Biol; 2021 Jul; 17(7):e1009215. PubMed ID: 34283829
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein dynamics by the combination of high-speed AFM and computational modeling.
    Flechsig H; Ando T
    Curr Opin Struct Biol; 2023 Jun; 80():102591. PubMed ID: 37075535
    [TBL] [Abstract][Full Text] [Related]  

  • 15. HS-AFM single-molecule structural biology uncovers basis of transporter wanderlust kinetics.
    Jiang Y; Miyagi A; Wang X; Qiu B; Boudker O; Scheuring S
    Nat Struct Mol Biol; 2024 Aug; 31(8):1286-1295. PubMed ID: 38632360
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Visualizing Molecular Dynamics by High-Speed Atomic Force Microscopy.
    van Ewijk C; Maity S; Roos WH
    Methods Mol Biol; 2024; 2694():355-372. PubMed ID: 37824013
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removing the parachuting artifact using two-way scanning data in high-speed atomic force microscopy.
    Kubo S; Umeda K; Kodera N; Takada S
    Biophys Physicobiol; 2023; 20(1):e200006. PubMed ID: 37234854
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reconstruction of Three-Dimensional Conformations of Bacterial ClpB from High-Speed Atomic-Force-Microscopy Images.
    Dasgupta B; Miyashita O; Uchihashi T; Tama F
    Front Mol Biosci; 2021; 8():704274. PubMed ID: 34422905
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atomic Force Microscopy: An Introduction.
    Piontek MC; Roos WH
    Methods Mol Biol; 2018; 1665():243-258. PubMed ID: 28940073
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resolving the data asynchronicity in high-speed atomic force microscopy measurement via the Kalman Smoother.
    Kubo S; Kato S; Nakamura K; Kodera N; Takada S
    Sci Rep; 2020 Oct; 10(1):18393. PubMed ID: 33110182
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.