These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 36580610)

  • 1. Calligraphy and Kirigami/Origami-Inspired All-Paper Touch-Temperature Sensor with Stimulus Discriminability.
    Liu X; Sun J; Tong Y; Zhang M; Wang X; Guo S; Han X; Zhao X; Tang Q; Liu Y
    ACS Appl Mater Interfaces; 2023 Jan; 15(1):1726-1735. PubMed ID: 36580610
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shape-Designable and Reconfigurable All-Paper Sensor through the Sandwich Architecture for Pressure/Proximity Detection.
    Zhao P; Zhang R; Tong Y; Zhao X; Zhang T; Wang X; Tang Q; Liu Y
    ACS Appl Mater Interfaces; 2021 Oct; 13(41):49085-49095. PubMed ID: 34612643
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Origami and Kirigami Nanocomposites.
    Xu L; Shyu TC; Kotov NA
    ACS Nano; 2017 Aug; 11(8):7587-7599. PubMed ID: 28735531
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multifunctional Two-Dimensional PtSe
    Okogbue E; Han SS; Ko TJ; Chung HS; Ma J; Shawkat MS; Kim JH; Kim JH; Ji E; Oh KH; Zhai L; Lee GH; Jung Y
    Nano Lett; 2019 Nov; 19(11):7598-7607. PubMed ID: 31244238
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-Powered Carbon Ink/Filter Paper Flexible Humidity Sensor Based on Moisture-Induced Voltage Generation.
    Li X; Guo Y; Meng J; Li X; Li M; Gao D
    Langmuir; 2022 Jul; 38(27):8232-8240. PubMed ID: 35759371
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Origami Paper-Based Stretchable Humidity Sensor for Textile-Attachable Wearable Electronics.
    Chen X; Li Y; Wang X; Yu H
    ACS Appl Mater Interfaces; 2022 Aug; 14(31):36227-36237. PubMed ID: 35912486
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robust and Multifunctional Kirigami Electronics with a Tough and Permeable Aramid Nanofiber Framework.
    Liu H; Li H; Wang Z; Wei X; Zhu H; Sun M; Lin Y; Xu L
    Adv Mater; 2022 Dec; 34(50):e2207350. PubMed ID: 36222392
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kirigami-Inspired Biodesign for Applications in Healthcare.
    Brooks AK; Chakravarty S; Ali M; Yadavalli VK
    Adv Mater; 2022 May; 34(18):e2109550. PubMed ID: 35073433
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultralow-Cost, Highly Sensitive, and Flexible Pressure Sensors Based on Carbon Black and Airlaid Paper for Wearable Electronics.
    Han Z; Li H; Xiao J; Song H; Li B; Cai S; Chen Y; Ma Y; Feng X
    ACS Appl Mater Interfaces; 2019 Sep; 11(36):33370-33379. PubMed ID: 31408310
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D and 4D assembly of functional structures using shape-morphing materials for biological applications.
    Mirzababaei S; Towery LAK; Kozminsky M
    Front Bioeng Biotechnol; 2024; 12():1347666. PubMed ID: 38605991
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Large Curvature Self-Folding Method of a Thick Metal Layer for Hinged Origami/Kirigami Stretchable Electronic Devices.
    Eda A; Yasuga H; Sato T; Sato Y; Suto K; Tachi T; Iwase E
    Micromachines (Basel); 2022 Jun; 13(6):. PubMed ID: 35744521
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kirigami-Origami-Inspired Lead-Free Piezoelectric Ceramics.
    Wang Z; Ma D; Wang Y; Xie Y; Yu Z; Cheng J; Li L; Sun L; Dong S; Wang H
    Adv Sci (Weinh); 2023 Jun; 10(17):e2207059. PubMed ID: 37096841
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calligraphic interdigitated capacitive sensors for green electronics.
    Thakur AS; Srivatava V; Park HKB; Kebaili I; Boukhris I; Joo YH; Sung TH; Kumar A; Vaish R
    Sci Rep; 2024 Jul; 14(1):15685. PubMed ID: 38977727
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kirigami-Design-Enabled Hydrogel Multimorphs with Application as a Multistate Switch.
    Hao XP; Xu Z; Li CY; Hong W; Zheng Q; Wu ZL
    Adv Mater; 2020 Jun; 32(22):e2000781. PubMed ID: 32319155
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kirigami-Inspired Programmable Soft Magnetoresponsive Actuators with Versatile Morphing Modes.
    Zhu H; Wang Y; Ge Y; Zhao Y; Jiang C
    Adv Sci (Weinh); 2022 Nov; 9(32):e2203711. PubMed ID: 36180420
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering by Cuts: How Kirigami Principle Enables Unique Mechanical Properties and Functionalities.
    Tao J; Khosravi H; Deshpande V; Li S
    Adv Sci (Weinh); 2022 Oct; 10(1):e2204733. PubMed ID: 36310142
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Eco-friendly all-carbon paper electronics fabricated by a solvent-free drawing method.
    Kanaparthi S; Badhulika S
    Nanotechnology; 2016 Mar; 27(9):095206. PubMed ID: 26854529
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kirigami/origami: unfolding the new regime of advanced 3D microfabrication/nanofabrication with "folding".
    Chen S; Chen J; Zhang X; Li ZY; Li J
    Light Sci Appl; 2020; 9():75. PubMed ID: 32377337
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reprogrammable Chemical 3D Shaping for Origami, Kirigami, and Reconfigurable Molding.
    Oyefusi A; Chen J
    Angew Chem Int Ed Engl; 2017 Jul; 56(28):8250-8253. PubMed ID: 28556408
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Boundary curvature guided programmable shape-morphing kirigami sheets.
    Hong Y; Chi Y; Wu S; Li Y; Zhu Y; Yin J
    Nat Commun; 2022 Jan; 13(1):530. PubMed ID: 35082311
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.