These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 36580659)

  • 1. Surface Acidity Dictates Proton Transport in WO
    Yang Y; Zhou X; Qu D; Liu D; Xie Z; Li J; Tang H
    Langmuir; 2023 Jan; 39(1):453-460. PubMed ID: 36580659
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dual-Proton Conductor for Fuel Cells with Flexible Operational Temperature.
    Li W; Liu W; Jia W; Zhang J; Zhang Q; Zhang Z; Zhang J; Li Y; Liu Y; Wang H; Xiang Y; Lu S
    Adv Mater; 2024 Apr; 36(14):e2310584. PubMed ID: 38160326
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acidic Groups Functionalized Carbon Dots Capping Channels of a Proton Conductive Metal-Organic Framework by Coordination Bonds to Improve the Water-Retention Capacity and Boost Proton Conduction.
    Zhang J; Zhang R; Liu Y; Kong YR; Luo HB; Zou Y; Zhai L; Ren XM
    ACS Appl Mater Interfaces; 2021 Dec; 13(50):60084-60091. PubMed ID: 34889608
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anhydrous Superprotonic Conductivity in the Zirconium Acid Triphosphate ZrH
    Fop S; Vivani R; Masci S; Casciola M; Donnadio A
    Angew Chem Int Ed Engl; 2023 Apr; 62(18):e202218421. PubMed ID: 36856155
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rational strategies for proton-conductive metal-organic frameworks.
    Lim DW; Kitagawa H
    Chem Soc Rev; 2021 Jun; 50(11):6349-6368. PubMed ID: 33870975
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coal Oxide as a Thermally Robust Carbon-Based Proton Conductor.
    Hatakeyama K; Ogata C; Koinuma M; Taniguchi T; Hayami S; Kuroiwa K; Matsumoto Y
    ACS Appl Mater Interfaces; 2015 Oct; 7(41):23041-6. PubMed ID: 26452091
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of Proton Dynamics for the Understanding of Conduction Mechanism in Proton Conductive Metal-Organic Frameworks.
    Kolokolov DI; Lim DW; Kitagawa H
    Chem Rec; 2020 Nov; 20(11):1297-1313. PubMed ID: 32959508
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrated Proton-Conductive Metal-Organic Frameworks.
    Sadakiyo M; Yamada T; Kitagawa H
    Chempluschem; 2016 Aug; 81(8):691-701. PubMed ID: 31968837
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insights into the Proton Transport Mechanism in TiO
    Gao J; Meng Y; Benton A; He J; Jacobsohn LG; Tong J; Brinkman KS
    ACS Appl Mater Interfaces; 2020 Aug; 12(34):38012-38018. PubMed ID: 32846475
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Different Protonic Species Affecting Proton Conductivity in Hollow Spherelike Polyoxometalates.
    Liu WJ; Dong LZ; Li RH; Chen YJ; Sun SN; Li SL; Lan YQ
    ACS Appl Mater Interfaces; 2019 Feb; 11(7):7030-7036. PubMed ID: 30672275
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermally Stable Super Ionic Conductor from Carbon Sphere Oxide.
    Islam MS; Karim MR; Hatakeyama K; Takehira H; Ohtani R; Nakamura M; Koinuma M; Hayami S
    Chem Asian J; 2016 Aug; 11(16):2322-7. PubMed ID: 27411089
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conduction Mechanism in Graphene Oxide Membranes with Varied Water Content: From Proton Hopping Dominant to Ion Diffusion Dominant.
    Zhang L; Liu Z; Yang C; García Sakai V; Tyagi M; Hong L
    ACS Nano; 2022 Sep; 16(9):13771-13782. PubMed ID: 35993828
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proton Transport in Metal-Organic Frameworks.
    Lim DW; Kitagawa H
    Chem Rev; 2020 Aug; 120(16):8416-8467. PubMed ID: 32407101
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrothermal Stability of CeO
    Liu J; Shi X; Shan Y; Yan Z; Shan W; Yu Y; He H
    Environ Sci Technol; 2018 Oct; 52(20):11769-11777. PubMed ID: 30207708
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and performance of solid proton conductor molybdovanadosilicic acid.
    Xie Z; Wu H; Wu Q; Ai L
    RSC Adv; 2018 Apr; 8(25):13984-13988. PubMed ID: 35539341
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solid state ionics: a Japan perspective.
    Yamamoto O
    Sci Technol Adv Mater; 2017; 18(1):504-527. PubMed ID: 28804526
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simple Transformation of Covalent Organic Frameworks to Highly Proton-Conductive Electrolytes.
    Zhou B; Le J; Cheng Z; Zhao X; Shen M; Xie M; Hu B; Yang X; Chen L; Chen H
    ACS Appl Mater Interfaces; 2020 Feb; 12(7):8198-8205. PubMed ID: 31990167
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Designing UiO-66-Based Superprotonic Conductor with the Highest Metal-Organic Framework Based Proton Conductivity.
    Mukhopadhyay S; Debgupta J; Singh C; Sarkar R; Basu O; Das SK
    ACS Appl Mater Interfaces; 2019 Apr; 11(14):13423-13432. PubMed ID: 30888148
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metal-Organic Framework-Derived N-Doped Porous Carbon for a Superprotonic Conductor at above 100 °C.
    Ren Q; Chen Y; Kong YR; Zhang J; Luo HB; Liu Y; Zou Y; Ren XM
    Inorg Chem; 2022 Dec; 61(49):20057-20063. PubMed ID: 36455074
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hierarchical Nanostructured WO3 with Biomimetic Proton Channels and Mixed Ionic-Electronic Conductivity for Electrochemical Energy Storage.
    Chen Z; Peng Y; Liu F; Le Z; Zhu J; Shen G; Zhang D; Wen M; Xiao S; Liu CP; Lu Y; Li H
    Nano Lett; 2015 Oct; 15(10):6802-8. PubMed ID: 26406938
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.