These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 36580694)

  • 1. A simple approach for coffee-ring suppression yielding homogeneous drying patterns of ZnO and TiO
    Marica I; Stefan M; Boca S; Falamaş A; Farcău C
    J Colloid Interface Sci; 2023 Apr; 635():117-127. PubMed ID: 36580694
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Suppression of the Coffee-Ring Effect and Evaporation-Driven Disorder to Order Transition in Colloidal Droplets.
    Das S; Dey A; Reddy G; Sarma DD
    J Phys Chem Lett; 2017 Oct; 8(19):4704-4709. PubMed ID: 28885853
    [TBL] [Abstract][Full Text] [Related]  

  • 3. All-nanoparticle self-assembly ZnO/TiO₂ heterojunction thin films with remarkably enhanced photoelectrochemical activity.
    Yuan S; Mu J; Mao R; Li Y; Zhang Q; Wang H
    ACS Appl Mater Interfaces; 2014 Apr; 6(8):5719-25. PubMed ID: 24670479
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of the Particle Concentration and Marangoni Flow on the Formation of Cellulose Nanocrystal Films.
    Gençer A; Schütz C; Thielemans W
    Langmuir; 2017 Jan; 33(1):228-234. PubMed ID: 28034313
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surfactant Control of Coffee Ring Formation in Carbon Nanotube Suspensions.
    Howard NS; Archer AJ; Sibley DN; Southee DJ; Wijayantha KGU
    Langmuir; 2023 Jan; 39(3):929-41. PubMed ID: 36607610
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of surface orientation on the organization of nanoparticles in drying nanofluid droplets.
    Hampton MA; Nguyen TA; Nguyen AV; Xu ZP; Huang L; Rudolph V
    J Colloid Interface Sci; 2012 Jul; 377(1):456-62. PubMed ID: 22503627
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magnetic Field-Driven Convection for Directed Surface Patterning of Colloids.
    Lee JG; Porter V; Shelton WA; Bharti B
    Langmuir; 2018 Dec; 34(50):15416-15424. PubMed ID: 30421934
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation of coffee-stain patterns at the nanoscale: The role of nanoparticle solubility and solvent evaporation rate.
    Zhang J; Milzetti J; Leroy F; Müller-Plathe F
    J Chem Phys; 2017 Mar; 146(11):114503. PubMed ID: 28330371
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Drying-mediated patterns in colloid-polymer suspensions.
    Ryu SA; Kim JY; Kim SY; Weon BM
    Sci Rep; 2017 Apr; 7(1):1079. PubMed ID: 28439069
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaporation of Initially Heated Sessile Droplets and the Resultant Dried Colloidal Deposits on Substrates Held at Ambient Temperature.
    Chatterjee S; Kumar M; Murallidharan JS; Bhardwaj R
    Langmuir; 2020 Jul; 36(29):8407-8421. PubMed ID: 32602342
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hierarchical Surface Patterns upon Evaporation of a ZnO Nanofluid Droplet: Effect of Particle Morphology.
    Wąsik P; Redeker C; Dane TG; Seddon AM; Wu H; Briscoe WH
    Langmuir; 2018 Jan; 34(4):1645-1654. PubMed ID: 29293357
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Drying of Ethanol/Water Droplets Containing Silica Nanoparticles.
    Shi J; Yang L; Bain CD
    ACS Appl Mater Interfaces; 2019 Apr; 11(15):14275-14285. PubMed ID: 30901186
    [TBL] [Abstract][Full Text] [Related]  

  • 13. From a microwave flash-synthesized TiO2 colloidal suspension to TiO2 thin films.
    Gressel-Michel E; Chaumont D; Stuerga D
    J Colloid Interface Sci; 2005 May; 285(2):674-9. PubMed ID: 15837485
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling Evaporation and Particle Assembly in Colloidal Droplets.
    Zhao M; Yong X
    Langmuir; 2017 Jun; 33(23):5734-5744. PubMed ID: 28548503
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting coffee ring formation upon drying in droplets of particle suspensions.
    Hertaeg MJ; Rees-Zimmerman C; Tabor RF; Routh AF; Garnier G
    J Colloid Interface Sci; 2021 Jun; 591():52-57. PubMed ID: 33592525
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoparticle deposition pattern during colloidal droplet evaporation as in-situ investigated by Low-Field NMR: The critical role of bound water.
    Mansoor B; Chen W
    J Colloid Interface Sci; 2022 May; 613():709-719. PubMed ID: 35066230
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Gelation on the Colloidal Deposition of Cellulose Nanocrystal Films.
    Gençer A; Van Rie J; Lombardo S; Kang K; Thielemans W
    Biomacromolecules; 2018 Aug; 19(8):3233-3243. PubMed ID: 29953209
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic photocontrol of the coffee-ring effect with optically tunable particle stickiness.
    Anyfantakis M; Baigl D
    Angew Chem Int Ed Engl; 2014 Dec; 53(51):14077-81. PubMed ID: 25288180
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensitive and uniform detection using Surface-Enhanced Raman Scattering: Influence of colloidal-droplets evaporation based on Au-Ag alloy nanourchins.
    Zhang D; Fang J; Li T
    J Colloid Interface Sci; 2018 Mar; 514():217-226. PubMed ID: 29268212
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DC field coupled evaporation of a sessile gold nanofluid droplet.
    Zaibudeen AW; Bandyopadhyay R
    Soft Matter; 2021 Nov; 17(45):10294-10300. PubMed ID: 34782898
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.