These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 36580768)

  • 1. Fabrication and characterization of a 3D polymicrobial microcosm biofilm model using melt electrowritten scaffolds.
    Ramachandra SS; Abdal-Hay A; Han P; Lee RSB; Ivanovski S
    Biomater Adv; 2023 Feb; 145():213251. PubMed ID: 36580768
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Melt Electrowritten Sandwich Scaffold Technique Using Sulforhodamine B to Monitor Stem Cell Behavior.
    Turner PR; Yoshida M; Ali MA; Cabral JD
    Tissue Eng Part C Methods; 2020 Oct; 26(10):519-527. PubMed ID: 32977739
    [No Abstract]   [Full Text] [Related]  

  • 3. Three-Dimensional Melt-Electrowritten Polycaprolactone/Chitosan Scaffolds Enhance Mesenchymal Stem Cell Behavior.
    Yoshida M; Turner PR; Ali MA; Cabral JD
    ACS Appl Bio Mater; 2021 Feb; 4(2):1319-1329. PubMed ID: 35014483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Melt electrowriting of PLA, PCL, and composite PLA/PCL scaffolds for tissue engineering application.
    Shahverdi M; Seifi S; Akbari A; Mohammadi K; Shamloo A; Movahhedy MR
    Sci Rep; 2022 Nov; 12(1):19935. PubMed ID: 36402790
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of pore size within fibrous scaffolds fabricated using melt electrowriting on human bone marrow stem cell osteogenesis.
    Brennan CM; Eichholz KF; Hoey DA
    Biomed Mater; 2019 Nov; 14(6):065016. PubMed ID: 31574493
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scaffold microarchitecture regulates angiogenesis and the regeneration of large bone defects.
    Eichholz KF; Freeman FE; Pitacco P; Nulty J; Ahern D; Burdis R; Browe DC; Garcia O; Hoey DA; Kelly DJ
    Biofabrication; 2022 Aug; 14(4):. PubMed ID: 35947963
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Degradation of Melt Electrowritten PCL Scaffolds Following Melt Processing and Plasma Surface Treatment.
    Paxton NC; Ho SWK; Tuten BT; Lipton-Duffin J; Woodruff MA
    Macromol Rapid Commun; 2021 Dec; 42(23):e2100433. PubMed ID: 34668263
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Melt Electrowriting of Complex 3D Anatomically Relevant Scaffolds.
    Saidy NT; Shabab T; Bas O; Rojas-González DM; Menne M; Henry T; Hutmacher DW; Mela P; De-Juan-Pardo EM
    Front Bioeng Biotechnol; 2020; 8():793. PubMed ID: 32850700
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design tools for patient specific and highly controlled melt electrowritten scaffolds.
    Paxton NC; Lanaro M; Bo A; Crooks N; Ross MT; Green N; Tetsworth K; Allenby MC; Gu Y; Wong CS; Powell SK; Woodruff MA
    J Mech Behav Biomed Mater; 2020 May; 105():103695. PubMed ID: 32090895
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly compliant biomimetic scaffolds for small diameter tissue-engineered vascular grafts (TEVGs) produced via melt electrowriting (MEW).
    Weekes A; Wehr G; Pinto N; Jenkins J; Li Z; Meinert C; Klein TJ
    Biofabrication; 2023 Dec; 16(1):. PubMed ID: 37992322
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioprinting of structurally organized meniscal tissue within anisotropic melt electrowritten scaffolds.
    Barceló X; Eichholz KF; Gonçalves IF; Garcia O; Kelly DJ
    Acta Biomater; 2023 Mar; 158():216-227. PubMed ID: 36638941
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Parametric control of fiber morphology and tensile mechanics in scaffolds with high aspect ratio geometry produced via melt electrowriting for musculoskeletal soft tissue engineering.
    Warren PB; Davis ZG; Fisher MB
    J Mech Behav Biomed Mater; 2019 Nov; 99():153-160. PubMed ID: 31352215
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of Gradient and Offset Architectures on the Mechanical and Biological Properties of 3-D Melt Electrowritten (MEW) Scaffolds.
    Abbasi N; Abdal-Hay A; Hamlet S; Graham E; Ivanovski S
    ACS Biomater Sci Eng; 2019 Jul; 5(7):3448-3461. PubMed ID: 33405729
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Graphene Addition on Polycaprolactone Scaffolds Fabricated Using Melt-Electrowriting.
    Chung JHY; Sayyar S; Wallace GG
    Polymers (Basel); 2022 Jan; 14(2):. PubMed ID: 35054724
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Melt Electrowriting of Thermoplastic Elastomers.
    Hochleitner G; Fürsattel E; Giesa R; Groll J; Schmidt HW; Dalton PD
    Macromol Rapid Commun; 2018 May; 39(10):e1800055. PubMed ID: 29656556
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design of 3D scaffolds for tissue engineering testing a tough polylactide-based graft copolymer.
    Dorati R; Colonna C; Tomasi C; Genta I; Bruni G; Conti B
    Mater Sci Eng C Mater Biol Appl; 2014 Jan; 34():130-9. PubMed ID: 24268242
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing the bioactivity of melt electrowritten PLLA scaffold by convenient, green, and effective hydrophilic surface modification.
    Meng J; Boschetto F; Yagi S; Marin E; Adachi T; Chen X; Pezzotti G; Sakurai S; Sasaki S; Aoki T; Yamane H; Xu H
    Mater Sci Eng C Mater Biol Appl; 2022 Apr; 135():112686. PubMed ID: 35581096
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tailored Melt Electrowritten Scaffolds for the Generation of Sheet-Like Tissue Constructs from Multicellular Spheroids.
    McMaster R; Hoefner C; Hrynevich A; Blum C; Wiesner M; Wittmann K; Dargaville TR; Bauer-Kreisel P; Groll J; Dalton PD; Blunk T
    Adv Healthc Mater; 2019 Apr; 8(7):e1801326. PubMed ID: 30835969
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biologically Inspired Scaffolds for Heart Valve Tissue Engineering via Melt Electrowriting.
    Saidy NT; Wolf F; Bas O; Keijdener H; Hutmacher DW; Mela P; De-Juan-Pardo EM
    Small; 2019 Jun; 15(24):e1900873. PubMed ID: 31058444
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Topographic Guidance in Melt-Electrowritten Tubular Scaffolds Enhances Engineered Kidney Tubule Performance.
    van Genderen AM; Jansen K; Kristen M; van Duijn J; Li Y; Schuurmans CCL; Malda J; Vermonden T; Jansen J; Masereeuw R; Castilho M
    Front Bioeng Biotechnol; 2020; 8():617364. PubMed ID: 33537294
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.