BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 36580816)

  • 1. Rapid metabolomic screening of cancer cells via high-throughput static droplet microfluidics.
    Radfar P; Ding L; de la Fuente LR; Aboulkheyr H; Gallego-Ortega D; Warkiani ME
    Biosens Bioelectron; 2023 Mar; 223():114966. PubMed ID: 36580816
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An easy-to-operate method for single-cell isolation and retrieval using a microfluidic static droplet array.
    Ding L; Radfar P; Rezaei M; Warkiani ME
    Mikrochim Acta; 2021 Jul; 188(8):242. PubMed ID: 34226955
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic isolation of breast cancer circulating tumor cells from microvolumes of mouse blood.
    Macaraniag C; Zhou J; Li J; Putzbach W; Hay N; Papautsky I
    Electrophoresis; 2023 Dec; 44(23):1859-1867. PubMed ID: 37528726
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Microfluidic Approach for Enrichment and Single-Cell Characterization of Circulating Tumor Cells from Peripheral Blood.
    Radfar P; Ding L; Es HA; Warkiani ME
    Methods Mol Biol; 2023; 2679():141-150. PubMed ID: 37300613
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multistage microfluidic cell sorting method and chip based on size and stiffness.
    Li G; Ji Y; Wu Y; Liu Y; Li H; Wang Y; Chi M; Sun H; Zhu H
    Biosens Bioelectron; 2023 Oct; 237():115451. PubMed ID: 37327603
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Separation of CTCs from WBCs using DEP-assisted inertial manipulation: A numerical study.
    Uddin MR; Sarowar MT; Chen X
    Electrophoresis; 2023 Dec; 44(23):1781-1794. PubMed ID: 37753944
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Droplet microfluidics for CTC-based liquid biopsy: a review.
    Jiang L; Yang H; Cheng W; Ni Z; Xiang N
    Analyst; 2023 Jan; 148(2):203-221. PubMed ID: 36508171
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Recent advances in isolation and detection of circulating tumor cells with a microfluidic system].
    Cao R; Zhang M; Yu H; Qin J
    Se Pu; 2022 Mar; 40(3):213-223. PubMed ID: 35243831
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combination of microfluidic chips and biosensing for the enrichment of circulating tumor cells.
    Shi J; Zhao C; Shen M; Chen Z; Liu J; Zhang S; Zhang Z
    Biosens Bioelectron; 2022 Apr; 202():114025. PubMed ID: 35078145
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acoustic separation of circulating tumor cells.
    Li P; Mao Z; Peng Z; Zhou L; Chen Y; Huang PH; Truica CI; Drabick JJ; El-Deiry WS; Dao M; Suresh S; Huang TJ
    Proc Natl Acad Sci U S A; 2015 Apr; 112(16):4970-5. PubMed ID: 25848039
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Poly(ethylene oxide) Concentration Gradient-Based Microfluidic Isolation of Circulating Tumor Cells.
    Cheng Y; Zhang S; Qin L; Zhao J; Song H; Yuan Y; Sun J; Tian F; Liu C
    Anal Chem; 2023 Feb; 95(6):3468-3475. PubMed ID: 36725367
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation of rare circulating tumour cells in cancer patients by microchip technology.
    Nagrath S; Sequist LV; Maheswaran S; Bell DW; Irimia D; Ulkus L; Smith MR; Kwak EL; Digumarthy S; Muzikansky A; Ryan P; Balis UJ; Tompkins RG; Haber DA; Toner M
    Nature; 2007 Dec; 450(7173):1235-9. PubMed ID: 18097410
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-throughput isolation of cancer cells in spiral microchannel by changing the direction, magnitude and location of the maximum velocity.
    Omrani V; Targhi MZ; Rahbarizadeh F; Nosrati R
    Sci Rep; 2023 Feb; 13(1):3213. PubMed ID: 36828913
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-Throughput Microfluidic Labyrinth for the Label-free Isolation of Circulating Tumor Cells.
    Lin E; Rivera-Báez L; Fouladdel S; Yoon HJ; Guthrie S; Wieger J; Deol Y; Keller E; Sahai V; Simeone DM; Burness ML; Azizi E; Wicha MS; Nagrath S
    Cell Syst; 2017 Sep; 5(3):295-304.e4. PubMed ID: 28941584
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spiral shape microfluidic channel for selective isolating of heterogenic circulating tumor cells.
    Kwak B; Lee J; Lee J; Kim HS; Kang S; Lee Y
    Biosens Bioelectron; 2018 Mar; 101():311-316. PubMed ID: 29055574
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pinched flow coupled shear-modulated inertial microfluidics for high-throughput rare blood cell separation.
    Bhagat AA; Hou HW; Li LD; Lim CT; Han J
    Lab Chip; 2011 Jun; 11(11):1870-8. PubMed ID: 21505682
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic biosensing of circulating tumor cells (CTCs): Recent progress and challenges in efficient diagnosis of cancer.
    Farshchi F; Hasanzadeh M
    Biomed Pharmacother; 2021 Feb; 134():111153. PubMed ID: 33360045
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of a novel integrated microfluidic chip for continuous separation of circulating tumor cells from peripheral blood cells.
    Bakhshi MS; Rizwan M; Khan GJ; Duan H; Zhai K
    Sci Rep; 2022 Oct; 12(1):17016. PubMed ID: 36220844
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Integrated Microfluidic Chip and Its Clinical Application for Circulating Tumor Cell Isolation and Single-Cell Analysis.
    Xu M; Zhao H; Chen J; Liu W; Li E; Wang Q; Zhang L
    Cytometry A; 2020 Jan; 97(1):46-53. PubMed ID: 31595638
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A curved expansion-contraction microfluidic structure for inertial based separation of circulating tumor cells from blood samples.
    Ebrahimi S; Alishiri M; Pishbin E; Afjoul H; Shamloo A
    J Chromatogr A; 2023 Aug; 1705():464200. PubMed ID: 37429078
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.