These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 36581032)
21. Characterization of three somatic embryogenesis receptor kinase genes from wheat, Triticum aestivum. Singla B; Khurana JP; Khurana P Plant Cell Rep; 2008 May; 27(5):833-43. PubMed ID: 18210118 [TBL] [Abstract][Full Text] [Related]
22. Genetic Dissection of Adult Plant Resistance to Sharp Eyespot Using an Updated Genetic Map of Niavt14 × Xuzhou25 Winter Wheat Recombinant Inbred Line Population. Liu C; Guo W; Zhang Q; Fu B; Yang Z; Sukumaran S; Cai J; Liu Y; Zhai W; Wu X; Wu J Plant Dis; 2021 Apr; 105(4):997-1005. PubMed ID: 33200970 [TBL] [Abstract][Full Text] [Related]
23. The wheat ethylene response factor transcription factor pathogen-induced ERF1 mediates host responses to both the necrotrophic pathogen Rhizoctonia cerealis and freezing stresses. Zhu X; Qi L; Liu X; Cai S; Xu H; Huang R; Li J; Wei X; Zhang Z Plant Physiol; 2014 Mar; 164(3):1499-514. PubMed ID: 24424323 [TBL] [Abstract][Full Text] [Related]
24. Comparative transcriptome analysis of resistant and susceptible wheat in response to Rhizoctonia cerealis. Geng X; Gao Z; Zhao L; Zhang S; Wu J; Yang Q; Liu S; Chen X BMC Plant Biol; 2022 May; 22(1):235. PubMed ID: 35534832 [TBL] [Abstract][Full Text] [Related]
25. Identification of Long Intergenic Noncoding RNAs in Yi K; Yan W; Li X; Yang S; Li J; Yin Y; Yuan F; Wang H; Kang Z; Han D; Zeng Q Microbiol Spectr; 2023 Jun; 11(3):e0344922. PubMed ID: 37036374 [TBL] [Abstract][Full Text] [Related]
26. The Wheat Wall-Associated Receptor-Like Kinase TaWAK-6D Mediates Broad Resistance to Two Fungal Pathogens Qi H; Guo F; Lv L; Zhu X; Zhang L; Yu J; Wei X; Zhang Z Front Plant Sci; 2021; 12():758196. PubMed ID: 34777437 [TBL] [Abstract][Full Text] [Related]
27. Ectopic expression of Triticum aestivum SERK genes (TaSERKs) control plant growth and development in Arabidopsis. Singh A; Khurana P Sci Rep; 2017 Sep; 7(1):12368. PubMed ID: 28959050 [TBL] [Abstract][Full Text] [Related]
28. Quantitative trait loci responsible for sharp eyespot resistance in common wheat CI12633. Wu X; Cheng K; Zhao R; Zang S; Bie T; Jiang Z; Wu R; Gao D; Zhang B Sci Rep; 2017 Sep; 7(1):11799. PubMed ID: 28924253 [TBL] [Abstract][Full Text] [Related]
29. Global Characterization of GH10 Family Xylanase Genes in Lu L; Liu Y; Zhang Z Int J Mol Sci; 2020 Mar; 21(5):. PubMed ID: 32155734 [TBL] [Abstract][Full Text] [Related]
30. A Wheat Cinnamyl Alcohol Dehydrogenase TaCAD12 Contributes to Host Resistance to the Sharp Eyespot Disease. Rong W; Luo M; Shan T; Wei X; Du L; Xu H; Zhang Z Front Plant Sci; 2016; 7():1723. PubMed ID: 27899932 [TBL] [Abstract][Full Text] [Related]
31. Genome-wide association mapping of resistance to eyespot disease (Pseudocercosporella herpotrichoides) in European winter wheat (Triticum aestivum L.) and fine-mapping of Pch1. Zanke CD; Rodemann B; Ling J; Muqaddasi QH; Plieske J; Polley A; Kollers S; Ebmeyer E; Korzun V; Argillier O; Stiewe G; Zschäckel T; Ganal MW; Röder MS Theor Appl Genet; 2017 Mar; 130(3):505-514. PubMed ID: 27866227 [TBL] [Abstract][Full Text] [Related]
32. Use of resistant Rhizoctonia cerealis strains to control wheat sharp eyespot using organically developed pig manure fertilizer. Xu Y; Li X; Cong C; Gong G; Xu Y; Che J; Hou F; Chen H; Wang L Sci Total Environ; 2020 Jul; 726():138568. PubMed ID: 32305767 [TBL] [Abstract][Full Text] [Related]
33. Development and molecular cytogenetic identification of a new wheat-rye 4R chromosome disomic addition line with resistances to powdery mildew, stripe rust and sharp eyespot. An D; Ma P; Zheng Q; Fu S; Li L; Han F; Han G; Wang J; Xu Y; Jin Y; Luo Q; Zhang X Theor Appl Genet; 2019 Jan; 132(1):257-272. PubMed ID: 30374527 [TBL] [Abstract][Full Text] [Related]
34. Genome structure and diversity of novel endornaviruses from wheat sharp eyespot pathogen Rhizoctonia cerealis. Li W; Zhang H; Shu Y; Cao S; Sun H; Zhang A; Chen H Virus Res; 2021 May; 297():198368. PubMed ID: 33684418 [TBL] [Abstract][Full Text] [Related]
35. Genome-Wide Identification of M35 Family Metalloproteases in Pan L; Wen S; Yu J; Lu L; Zhu X; Zhang Z Int J Mol Sci; 2020 Apr; 21(8):. PubMed ID: 32340265 [No Abstract] [Full Text] [Related]
36. Isolation and characterization of a novel wheat cysteine-rich receptor-like kinase gene induced by Rhizoctonia cerealis. Yang K; Rong W; Qi L; Li J; Wei X; Zhang Z Sci Rep; 2013 Oct; 3():3021. PubMed ID: 24149340 [TBL] [Abstract][Full Text] [Related]
37. Expression of a radish defensin in transgenic wheat confers increased resistance to Fusarium graminearum and Rhizoctonia cerealis. Li Z; Zhou M; Zhang Z; Ren L; Du L; Zhang B; Xu H; Xin Z Funct Integr Genomics; 2011 Mar; 11(1):63-70. PubMed ID: 21279533 [TBL] [Abstract][Full Text] [Related]
38. Methods for Screening Wheat Genotypes for Resistance to Sharp Eyespot in the Field and Greenhouse. Liu J; Anderson NP; Mundt CC Plant Dis; 2020 Dec; 104(12):3192-3196. PubMed ID: 33079640 [TBL] [Abstract][Full Text] [Related]
39. Genome-Wide Identification and Expression Analysis of Cutinase Gene Family in Lu L; Rong W; Massart S; Zhang Z Front Microbiol; 2018; 9():1813. PubMed ID: 30131789 [TBL] [Abstract][Full Text] [Related]
40. Development of a Rapid Approach for Detecting Sharp Eyespot Resistance in Seedling-Stage Wheat and Its Application in Chinese Wheat Cultivars. Ren Y; Yu PB; Wang Y; Hou WX; Yang X; Fan JL; Wu XH; Lv XL; Zhang N; Zhao L; Dong ZD; Chen F Plant Dis; 2020 Jun; 104(6):1662-1667. PubMed ID: 32324096 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]