These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 36581037)
1. Protein-polysaccharides based nanoparticles for loading with Malus baccata polyphenols and their digestibility in vitro. Li X; An S; Wang C; Jiang Q; Gao D; Wang L Int J Biol Macromol; 2023 Feb; 228():783-793. PubMed ID: 36581037 [TBL] [Abstract][Full Text] [Related]
2. Malus baccata (Linn.) Borkh polyphenols-loaded nanoparticles ameliorate intestinal health by modulating intestinal function and gut microbiota. Wang L; Li Z; An S; Zhu H; Li X; Gao D Int J Biol Macromol; 2023 Dec; 252():126233. PubMed ID: 37573904 [TBL] [Abstract][Full Text] [Related]
3. Synthesis, identification and bioavailability of Juglans regia L. polyphenols-Hohenbuehelia serotina polysaccharides nanoparticles. Zhou P; Feng R; Luo Z; Li X; Wang L; Gao L Food Chem; 2020 Nov; 329():127158. PubMed ID: 32512394 [TBL] [Abstract][Full Text] [Related]
4. Construction of Hohenbuehelia serotina polysaccharides-mucin nanoparticles and their sustain-release characteristics under simulated gastrointestinal digestion in vitro. An S; Wang L; Zhou P; Luo Z; Feng R; Li X Int J Biol Macromol; 2021 Nov; 191():1-8. PubMed ID: 34537291 [TBL] [Abstract][Full Text] [Related]
5. Construction and characterization of Li X; Feng R; Zhou P; Wang L; Luo Z; An S Food Funct; 2021 Nov; 12(21):10397-10410. PubMed ID: 34554172 [TBL] [Abstract][Full Text] [Related]
6. Hohenbuehelia serotina polysaccharides self-assembled nanoparticles for delivery of quercetin and their anti-proliferative activities during gastrointestinal digestion in vitro. Li X; Zhou P; Luo Z; Feng R; Wang L Int J Biol Macromol; 2022 Apr; 203():244-255. PubMed ID: 35093441 [TBL] [Abstract][Full Text] [Related]
7. Fabrication of BSA-Pinus koraiensis polyphenol-chitosan nanoparticles and their release characteristics under in vitro simulated gastrointestinal digestion. Wang L; Li X; Wang H Food Funct; 2019 Mar; 10(3):1295-1301. PubMed ID: 30785441 [TBL] [Abstract][Full Text] [Related]
8. Development of the pH responsive chitosan-alginate based microgel for encapsulation of Jughans regia L. polyphenols under simulated gastrointestinal digestion in vitro. Feng R; Wang L; Zhou P; Luo Z; Li X; Gao L Carbohydr Polym; 2020 Dec; 250():116917. PubMed ID: 33049889 [TBL] [Abstract][Full Text] [Related]
9. Development of porous materials via protein/polysaccharides/polyphenols nanoparticles stabilized Pickering high internal phase emulsions for adsorption of Pb Wang C; Wei M; Zhu H; Wang L; Ni S; Li X; Gao D Food Chem; 2024 Jul; 445():138796. PubMed ID: 38471345 [TBL] [Abstract][Full Text] [Related]
10. pH-Responsive Carrier-Free Polyphenol Nanoparticles Assembled by Oxidative Polymerization with Enhanced Stability and Antioxidant Activity for Improved Bioaccessibility. Liu D; Chen X; Yi Z; Tong Q; Ma L; Tan Y; Cao X; Li X ACS Appl Bio Mater; 2024 Mar; 7(3):1763-1777. PubMed ID: 38377541 [TBL] [Abstract][Full Text] [Related]
11. Physicochemical properties, bioaccessibility and antioxidant activity of the polyphenols from pine cones of Pinus koraiensis. Wang L; Li X; Wang H Int J Biol Macromol; 2019 Apr; 126():385-391. PubMed ID: 30576738 [TBL] [Abstract][Full Text] [Related]
12. Anti-proliferation activities of Oryza sativa L. anthocyanins-Hohenbuehelia serotina polysaccharides complex after in vitro gastrointestinal digestion. Wang L; Zhou P; Feng R; Luo Z; Li X; Gao L Food Chem Toxicol; 2020 Jan; 135():111012. PubMed ID: 31794802 [TBL] [Abstract][Full Text] [Related]
13. Encapsulation of three different types of polyphenols in casein using a customized pH-driven method: Preparation and characterization. Wang X; Chen C; Bao Y; Wang Y; Leonidovna Strakh Y Food Res Int; 2024 Aug; 189():114547. PubMed ID: 38876606 [TBL] [Abstract][Full Text] [Related]
14. Nanoparticles prepared by polysaccharides extracted from Biyang floral mushroom loaded with resveratrol: Characterization, bioactivity and release behavior under in vitro digestion. Liu K; Liu Y; Lu J; Liu X; Hao L; Yi J Food Chem; 2023 Nov; 426():136612. PubMed ID: 37348397 [TBL] [Abstract][Full Text] [Related]
15. Microencapsulation of Saffron Petal Phenolic Extract: Their Characterization, In Vitro Gastrointestinal Digestion, and Storage Stability. Ahmadian Z; Niazmand R; Pourfarzad A J Food Sci; 2019 Oct; 84(10):2745-2757. PubMed ID: 31546290 [TBL] [Abstract][Full Text] [Related]
17. Co-assembling nanoparticles of Asiatic acid and Caffeic acid phenethyl ester: Characterization, stability and bioactivity in vitro. Liu Y; Liu K; Wang X; Shao Y; Li X; Hao L; Zhang X; Yi J; Lu J Food Chem; 2023 Feb; 402():134409. PubMed ID: 36303377 [TBL] [Abstract][Full Text] [Related]
18. Whole body radioprotective effect of phenolic extracts from the fruits of Malus baccata (Linn.) Borkh. Wang L; Li X; Wang Z Food Funct; 2016 Feb; 7(2):975-81. PubMed ID: 26741951 [TBL] [Abstract][Full Text] [Related]
19. Impact of molecular interactions with phenolic compounds on food polysaccharides functionality. Dobson CC; Mottawea W; Rodrigue A; Buzati Pereira BL; Hammami R; Power KA; Bordenave N Adv Food Nutr Res; 2019; 90():135-181. PubMed ID: 31445595 [TBL] [Abstract][Full Text] [Related]
20. In Vitro Digestion of Apple Tissue Using a Dynamic Stomach Model: Grinding and Crushing Effects on Polyphenol Bioaccessibility. Liu D; Dhital S; Wu P; Chen XD; Gidley MJ J Agric Food Chem; 2020 Jan; 68(2):574-583. PubMed ID: 31820633 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]