These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 36581130)

  • 21. A fluorescence lifetime imaging classification method to investigate the collagen to lipid ratio in fibrous caps of atherosclerotic plaque.
    Phipps JE; Sun Y; Fishbein MC; Marcu L
    Lasers Surg Med; 2012 Sep; 44(7):564-71. PubMed ID: 22886522
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In Vivo Three-Photon Imaging of Lipids using Ultrabright Fluorogens with Aggregation-Induced Emission.
    Wang S; Li X; Chong SY; Wang X; Chen H; Chen C; Ng LG; Wang JW; Liu B
    Adv Mater; 2021 Mar; 33(11):e2007490. PubMed ID: 33576084
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Theranostic nanoplatform to target macrophages enables the inhibition of atherosclerosis progression and fluorescence imaging of plaque in ApoE(-/-) mice.
    Wang Q; Wang Y; Liu S; Sha X; Song X; Dai Y; Zhao M; Cai L; Xu K; Li J
    J Nanobiotechnology; 2021 Jul; 19(1):222. PubMed ID: 34320994
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lipid droplet-hitchhiking probe creates Trojan foam cells for fluorescence/photoacoustic imaging of atherosclerotic plaques.
    Jiang YW; Tang WJ; Gao G; Geng YQ; Wu FG; Min Q; Zhu JJ
    Biosens Bioelectron; 2022 Nov; 216():114613. PubMed ID: 35973274
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Targeting Elastase for Molecular Imaging of Early Atherosclerotic Lesions.
    Glinzer A; Ma X; Prakash J; Kimm MA; Lohöfer F; Kosanke K; Pelisek J; Thon MP; Vorlova S; Heinze KG; Eckstein HH; Gee MW; Ntziachristos V; Zernecke A; Wildgruber M
    Arterioscler Thromb Vasc Biol; 2017 Mar; 37(3):525-533. PubMed ID: 28062502
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cathepsin Activity-Based Probes and Inhibitor for Preclinical Atherosclerosis Imaging and Macrophage Depletion.
    Abd-Elrahman I; Kosuge H; Wises Sadan T; Ben-Nun Y; Meir K; Rubinstein C; Bogyo M; McConnell MV; Blum G
    PLoS One; 2016; 11(8):e0160522. PubMed ID: 27532109
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Frequency Analysis of the Photoacoustic Signal Generated by Coronary Atherosclerotic Plaque.
    Daeichin V; Wu M; De Jong N; van der Steen AF; van Soest G
    Ultrasound Med Biol; 2016 Aug; 42(8):2017-25. PubMed ID: 27181689
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Detection and Imaging of Active Substances in Early Atherosclerotic Lesions Using Fluorescent Probes.
    Li J; Xu J; Zhang W; Li P; Zhang W; Wang H; Tang B
    Chembiochem; 2023 Aug; 24(15):e202300105. PubMed ID: 36898970
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Plaque-targeted, proteolysis-resistant, activatable and MRI-visible nano-GLP-1 receptor agonist targets smooth muscle cell differentiation in atherosclerosis.
    Maiseyeu A; Di L; Ravodina A; Barajas-Espinosa A; Sakamoto A; Chaplin A; Zhong J; Gao H; Mignery M; Narula N; Finn AV; Rajagopalan S
    Theranostics; 2022; 12(6):2741-2757. PubMed ID: 35401813
    [No Abstract]   [Full Text] [Related]  

  • 30. CT/fluorescence dual-modal nanoemulsion platform for investigating atherosclerotic plaques.
    Ding J; Wang Y; Ma M; Zhang Y; Lu S; Jiang Y; Qi C; Luo S; Dong G; Wen S; An Y; Gu N
    Biomaterials; 2013 Jan; 34(1):209-16. PubMed ID: 23069709
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Engineering a lipid droplet targeting fluorescent probe with a large Stokes shift through ester substituent rotation for in vivo tumor imaging.
    Wei X; Zhang H; Sun Y; Liu J; Li Z
    Analyst; 2021 Jan; 146(2):495-501. PubMed ID: 33201941
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Postmortem Study of Validation of Low Signal on Fat-Suppressed T1-Weighted Magnetic Resonance Imaging as Marker of Lipid Core in Middle Cerebral Artery Atherosclerosis.
    Yang WJ; Chen XY; Zhao HL; Niu CB; Zhang B; Xu Y; Wong KS; Ng HK
    Stroke; 2016 Sep; 47(9):2299-304. PubMed ID: 27462119
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Near-infrared fluorescence imaging of murine atherosclerosis using an oxidized low density lipoprotein-targeted fluorochrome.
    Lu T; Wen S; Cui Y; Ju SH; Li KC; Teng GJ
    Int J Cardiovasc Imaging; 2014 Jan; 30(1):221-31. PubMed ID: 24170262
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A functional DNA nanosensor for highly sensitive and selective imaging of ClO
    Wu K; Yao C; Yang D; Liu D
    Biosens Bioelectron; 2022 Aug; 209():114273. PubMed ID: 35429768
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Renal-Clearable Probe with Water Solubility and Photostability for Biomarker-Activatable Detection of Acute Kidney Injuries via NIR-II Fluorescence and Optoacoustic Imaging.
    Zeng C; Tan Y; Sun L; Long Y; Zeng F; Wu S
    ACS Appl Mater Interfaces; 2023 Apr; 15(14):17664-17674. PubMed ID: 37011134
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A novel photoacoustic nanoprobe of ICG@PEG-Ag2S for atherosclerosis targeting and imaging in vivo.
    Wu C; Zhang Y; Li Z; Li C; Wang Q
    Nanoscale; 2016 Jul; 8(25):12531-9. PubMed ID: 26853187
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fluorescent Molecular Tomography for In Vivo Imaging of Mouse Atherosclerosis.
    Arranz A; Rudin M; Zaragoza C; Ripoll J
    Methods Mol Biol; 2015; 1339():367-76. PubMed ID: 26445804
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A fluoran-based viscosity probe with high-performance for lysosome-targeted fluorescence imaging.
    Han D; Yi J; Liu C; Liang L; Huang K; Jing L; Qin D
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Sep; 238():118405. PubMed ID: 32403072
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Targeting Theranostics of Atherosclerosis by Dual-Responsive Nanoplatform via Photoacoustic Imaging and Three-In-One Integrated Lipid Management.
    Ma B; Xiao Y; Lv Q; Li G; Wang Y; Fu G
    Adv Mater; 2023 Feb; 35(5):e2206129. PubMed ID: 36394179
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization of lipid-rich plaques using spectroscopic optical coherence tomography.
    Nam HS; Song JW; Jang SJ; Lee JJ; Oh WY; Kim JW; Yoo H
    J Biomed Opt; 2016 Jul; 21(7):75004. PubMed ID: 27391375
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.