BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 36581184)

  • 1. Olfactory-auditory sensory integration in the lateral entorhinal cortex.
    Wu T; Li S; Du D; Li R; Liu P; Yin Z; Zhang H; Qiao Y; Li A
    Prog Neurobiol; 2023 Feb; 221():102399. PubMed ID: 36581184
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lateral entorhinal modulation of piriform cortical activity and fine odor discrimination.
    Chapuis J; Cohen Y; He X; Zhang Z; Jin S; Xu F; Wilson DA
    J Neurosci; 2013 Aug; 33(33):13449-59. PubMed ID: 23946403
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Olfactory-driven beta band entrainment of limbic circuitry during neonatal development.
    Kostka JK; Hanganu-Opatz IL
    J Physiol; 2023 Aug; 601(16):3605-3630. PubMed ID: 37434507
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coordinated electrical activity in the olfactory bulb gates the oscillatory entrainment of entorhinal networks in neonatal mice.
    Gretenkord S; Kostka JK; Hartung H; Watznauer K; Fleck D; Minier-Toribio A; Spehr M; Hanganu-Opatz IL
    PLoS Biol; 2019 Jan; 17(1):e2006994. PubMed ID: 30703080
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Task-Demand-Dependent Neural Representation of Odor Information in the Olfactory Bulb and Posterior Piriform Cortex.
    Wang D; Liu P; Mao X; Zhou Z; Cao T; Xu J; Sun C; Li A
    J Neurosci; 2019 Dec; 39(50):10002-10018. PubMed ID: 31672791
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatially segregated feedforward and feedback neurons support differential odor processing in the lateral entorhinal cortex.
    Leitner FC; Melzer S; Lütcke H; Pinna R; Seeburg PH; Helmchen F; Monyer H
    Nat Neurosci; 2016 Jul; 19(7):935-44. PubMed ID: 27182817
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Olfactory bulb activity shapes the development of entorhinal-hippocampal coupling and associated cognitive abilities.
    Chen YN; Kostka JK; Bitzenhofer SH; Hanganu-Opatz IL
    Curr Biol; 2023 Oct; 33(20):4353-4366.e5. PubMed ID: 37729915
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GABAB Receptors Tune Cortical Feedback to the Olfactory Bulb.
    Mazo C; Lepousez G; Nissant A; Valley MT; Lledo PM
    J Neurosci; 2016 Aug; 36(32):8289-304. PubMed ID: 27511004
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bursting mitral cells time the oscillatory coupling between olfactory bulb and entorhinal networks in neonatal mice.
    Kostka JK; Gretenkord S; Spehr M; Hanganu-Opatz IL
    J Physiol; 2020 Dec; 598(24):5753-5769. PubMed ID: 32926437
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhalation Frequency Controls Reformatting of Mitral/Tufted Cell Odor Representations in the Olfactory Bulb.
    Díaz-Quesada M; Youngstrom IA; Tsuno Y; Hansen KR; Economo MN; Wachowiak M
    J Neurosci; 2018 Feb; 38(9):2189-2206. PubMed ID: 29374137
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cholinergic inputs from Basal forebrain add an excitatory bias to odor coding in the olfactory bulb.
    Rothermel M; Carey RM; Puche A; Shipley MT; Wachowiak M
    J Neurosci; 2014 Mar; 34(13):4654-64. PubMed ID: 24672011
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid odor processing by layer 2 subcircuits in lateral entorhinal cortex.
    Bitzenhofer SH; Westeinde EA; Zhang HB; Isaacson JS
    Elife; 2022 Feb; 11():. PubMed ID: 35129439
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coding of odor molecules by mitral/tufted cells in rabbit olfactory bulb. II. Aromatic compounds.
    Katoh K; Koshimoto H; Tani A; Mori K
    J Neurophysiol; 1993 Nov; 70(5):2161-75. PubMed ID: 8294977
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Learning-Dependent and -Independent Enhancement of Mitral/Tufted Cell Glomerular Odor Responses Following Olfactory Fear Conditioning in Awake Mice.
    Ross JM; Fletcher ML
    J Neurosci; 2018 May; 38(20):4623-4640. PubMed ID: 29669746
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Negative valence encoding in the lateral entorhinal cortex during aversive olfactory learning.
    Liu P; Gao C; Wu J; Wu T; Zhang Y; Liu C; Sun C; Li A
    Cell Rep; 2023 Oct; 42(10):113204. PubMed ID: 37804511
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Postnatal Odor Exposure Increases the Strength of Interglomerular Lateral Inhibition onto Olfactory Bulb Tufted Cells.
    Geramita M; Urban NN
    J Neurosci; 2016 Dec; 36(49):12321-12327. PubMed ID: 27927952
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Leptin modulates olfactory discrimination and neural activity in the olfactory bulb.
    Sun C; Tang K; Wu J; Xu H; Zhang W; Cao T; Zhou Y; Yu T; Li A
    Acta Physiol (Oxf); 2019 Oct; 227(2):e13319. PubMed ID: 31144469
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence of lateral synaptic interactions in olfactory bulb output cell responses to odors.
    Wilson DA; Leon M
    Brain Res; 1987 Aug; 417(1):175-80. PubMed ID: 3040181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Odor-evoked activity in the mouse lateral entorhinal cortex.
    Xu W; Wilson DA
    Neuroscience; 2012 Oct; 223():12-20. PubMed ID: 22871522
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasticity of Sniffing Pattern and Neural Activity in the Olfactory Bulb of Behaving Mice During Odor Sampling, Anticipation, and Reward.
    Liu P; Cao T; Xu J; Mao X; Wang D; Li A
    Neurosci Bull; 2020 Jun; 36(6):598-610. PubMed ID: 31989425
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.