These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 36581517)

  • 1. Improving photosynthetic efficiency by modulating non-photochemical quenching.
    Ghosh D; Mohapatra S; Dogra V
    Trends Plant Sci; 2023 Mar; 28(3):264-266. PubMed ID: 36581517
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High non-photochemical quenching of VPZ transgenic potato plants limits CO
    Lehretz GG; Schneider A; Leister D; Sonnewald U
    J Integr Plant Biol; 2022 Sep; 64(9):1821-1832. PubMed ID: 35763422
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The roles of photochemical and non-photochemical quenching in regulating photosynthesis depend on the phases of fluctuating light conditions.
    Han J; Gu L; Warren JM; Guha A; Mclennan DA; Zhang W; Zhang Y
    Tree Physiol; 2022 Apr; 42(4):848-861. PubMed ID: 34617116
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biodiversity of NPQ.
    Goss R; Lepetit B
    J Plant Physiol; 2015 Jan; 172():13-32. PubMed ID: 24854581
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-Photochemical Quenching under Drought and Fluctuating Light.
    Nosalewicz A; Okoń K; Skorupka M
    Int J Mol Sci; 2022 May; 23(9):. PubMed ID: 35563573
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the relationship between non-photochemical quenching and photoprotection of Photosystem II.
    Lambrev PH; Miloslavina Y; Jahns P; Holzwarth AR
    Biochim Biophys Acta; 2012 May; 1817(5):760-9. PubMed ID: 22342615
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plant biodiversity and regulation of photosynthesis in the natural environment.
    Sello S; Meneghesso A; Alboresi A; Baldan B; Morosinotto T
    Planta; 2019 Apr; 249(4):1217-1228. PubMed ID: 30607502
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The xanthophyll cycle affects reversible interactions between PsbS and light-harvesting complex II to control non-photochemical quenching.
    Sacharz J; Giovagnetti V; Ungerer P; Mastroianni G; Ruban AV
    Nat Plants; 2017 Jan; 3():16225. PubMed ID: 28134919
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of non-photochemical quenching increases functional absorption cross-section of photosystem II as excitation from closed reaction centres is transferred to open centres, facilitating earlier light saturation of photosynthetic electron transport.
    Osmond CB; Chow WS; Robinson SA
    Funct Plant Biol; 2022 May; 49(6):463-482. PubMed ID: 33705686
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acclimation- and mutation-induced enhancement of PsbS levels affects the kinetics of non-photochemical quenching in Arabidopsis thaliana.
    Zia A; Johnson MP; Ruban AV
    Planta; 2011 Jun; 233(6):1253-64. PubMed ID: 21340700
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Higher order photoprotection mutants reveal the importance of ΔpH-dependent photosynthesis-control in preventing light induced damage to both photosystem II and photosystem I.
    Barbato R; Tadini L; Cannata R; Peracchio C; Jeran N; Alboresi A; Morosinotto T; Bajwa AA; Paakkarinen V; Suorsa M; Aro EM; Pesaresi P
    Sci Rep; 2020 Apr; 10(1):6770. PubMed ID: 32317747
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energy dissipation pathways in Photosystem 2 of the diatom, Phaeodactylum tricornutum, under high-light conditions.
    Kuzminov FI; Gorbunov MY
    Photosynth Res; 2016 Feb; 127(2):219-35. PubMed ID: 26220363
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physiological functions of PsbS-dependent and PsbS-independent NPQ under naturally fluctuating light conditions.
    Ikeuchi M; Uebayashi N; Sato F; Endo T
    Plant Cell Physiol; 2014 Jul; 55(7):1286-95. PubMed ID: 24850835
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photoprotection strategies of the alga Nannochloropsis gaditana.
    Chukhutsina VU; Fristedt R; Morosinotto T; Croce R
    Biochim Biophys Acta Bioenerg; 2017 Jul; 1858(7):544-552. PubMed ID: 28499880
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Harnessing the Role of Foliar Applied Salicylic Acid in Decreasing Chlorophyll Content to Reassess Photosystem II Photoprotection in Crop Plants.
    Moustakas M; Sperdouli I; Adamakis IS; Moustaka J; İşgören S; Şaş B
    Int J Mol Sci; 2022 Jun; 23(13):. PubMed ID: 35806045
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Effects of irradiance transition on leaf photochemical efficiency of mulberry under different light conditions].
    Hu YB; Zheng GY; Wang JY; Ao H; Sun GY
    Ying Yong Sheng Tai Xue Bao; 2010 Feb; 21(2):300-5. PubMed ID: 20461997
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Significance of the lipid phase in the dynamics and functions of the xanthophyll cycle as revealed by PsbS overexpression in tobacco and in-vitro de-epoxidation in monogalactosyldiacylglycerol micelles.
    Hieber AD; Kawabata O; Yamamoto HY
    Plant Cell Physiol; 2004 Jan; 45(1):92-102. PubMed ID: 14749490
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adjustment of photosynthetic activity to drought and fluctuating light in wheat.
    Grieco M; Roustan V; Dermendjiev G; Rantala S; Jain A; Leonardelli M; Neumann K; Berger V; Engelmeier D; Bachmann G; Ebersberger I; Aro EM; Weckwerth W; Teige M
    Plant Cell Environ; 2020 Jun; 43(6):1484-1500. PubMed ID: 32176335
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dehydroascorbate reductase affects non-photochemical quenching and photosynthetic performance.
    Chen Z; Gallie DR
    J Biol Chem; 2008 Aug; 283(31):21347-61. PubMed ID: 18539599
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photoprotection mechanisms under different CO
    Ueno Y; Shimakawa G; Aikawa S; Miyake C; Akimoto S
    Photosynth Res; 2020 Jun; 144(3):397-407. PubMed ID: 32377933
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.