These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 36581611)

  • 1. Discovery of two-dimensional binary nanoparticle superlattices using global Monte Carlo optimization.
    Zhou Y; Arya G
    Nat Commun; 2022 Dec; 13(1):7976. PubMed ID: 36581611
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Binary Nanoparticle Superlattices for Plasmonically Modulating Upconversion Luminescence.
    Deng K; Xu L; Guo X; Wu X; Liu Y; Zhu Z; Li Q; Zhan Q; Li C; Quan Z
    Small; 2020 Sep; 16(38):e2002066. PubMed ID: 32815270
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 2D superlattices
    Jiang L; Mao X; Liu C; Guo X; Deng R; Zhu J
    Chem Commun (Camb); 2023 Nov; 59(96):14223-14235. PubMed ID: 37962523
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural characterization of self-assembled multifunctional binary nanoparticle superlattices.
    Shevchenko EV; Talapin DV; Murray CB; O'Brien S
    J Am Chem Soc; 2006 Mar; 128(11):3620-37. PubMed ID: 16536535
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hierarchically self-assembled hexagonal honeycomb and kagome superlattices of binary 1D colloids.
    Lim SH; Lee T; Oh Y; Narayanan T; Sung BJ; Choi SM
    Nat Commun; 2017 Aug; 8(1):360. PubMed ID: 28842555
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interfacial Assembly of Tunable Anisotropic Nanoparticle Architectures.
    Tang TY; Zhou Y; Arya G
    ACS Nano; 2019 Apr; 13(4):4111-4123. PubMed ID: 30883090
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrostatic assembly of binary nanoparticle superlattices using protein cages.
    Kostiainen MA; Hiekkataipale P; Laiho A; Lemieux V; Seitsonen J; Ruokolainen J; Ceci P
    Nat Nanotechnol; 2013 Jan; 8(1):52-6. PubMed ID: 23241655
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tunable porous nanoallotropes prepared by post-assembly etching of binary nanoparticle superlattices.
    Udayabhaskararao T; Altantzis T; Houben L; Coronado-Puchau M; Langer J; Popovitz-Biro R; Liz-Marzán LM; Vuković L; Král P; Bals S; Klajn R
    Science; 2017 Oct; 358(6362):514-518. PubMed ID: 29074773
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tunable Subnanometer Gaps in Self-Assembled Monolayer Gold Nanoparticle Superlattices Enabling Strong Plasmonic Field Confinement.
    Lu B; Vegso K; Micky S; Ritz C; Bodik M; Fedoryshyn YM; Siffalovic P; Stemmer A
    ACS Nano; 2023 Jul; 17(13):12774-12787. PubMed ID: 37354449
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Binary and ternary superlattices self-assembled from colloidal nanodisks and nanorods.
    Paik T; Diroll BT; Kagan CR; Murray CB
    J Am Chem Soc; 2015 May; 137(20):6662-9. PubMed ID: 25927895
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-dimensional binary and ternary nanocrystal superlattices: the case of monolayers and bilayers.
    Dong A; Ye X; Chen J; Murray CB
    Nano Lett; 2011 Apr; 11(4):1804-9. PubMed ID: 21413781
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-assembly of high-index faceted gold nanocrystals to fabricate tunable coupled plasmonic superlattices.
    Zhang H; Guan C; Song N; Zhang Y; Liu H; Fang J
    Phys Chem Chem Phys; 2018 Jan; 20(5):3571-3580. PubMed ID: 29337328
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tunable plasmonic coupling in self-assembled binary nanocrystal superlattices studied by correlated optical microspectrophotometry and electron microscopy.
    Ye X; Chen J; Diroll BT; Murray CB
    Nano Lett; 2013 Mar; 13(3):1291-7. PubMed ID: 23418862
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tunable nanoparticle arrays at charged interfaces.
    Srivastava S; Nykypanchuk D; Fukuto M; Gang O
    ACS Nano; 2014 Oct; 8(10):9857-66. PubMed ID: 25197949
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional binary superlattices of magnetic nanocrystals and semiconductor quantum dots.
    Redl FX; Cho KS; Murray CB; O'Brien S
    Nature; 2003 Jun; 423(6943):968-71. PubMed ID: 12827196
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gold Nanoparticle Monolayers with Tunable Optical and Electrical Properties.
    Yang G; Hu L; Keiper TD; Xiong P; Hallinan DT
    Langmuir; 2016 Apr; 32(16):4022-33. PubMed ID: 27018432
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Percolated Plasmonic Superlattices of Nanospheres with 1 nm-Level Gap as High-Index Metamaterials.
    Shin DI; Yoo SS; Park SH; Lee G; Bae WK; Kwon SJ; Yoo PJ; Yi GR
    Adv Mater; 2022 Sep; 34(35):e2203942. PubMed ID: 35867886
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biological Molecules-Governed Plasmonic Nanoparticle Dimers with Tailored Optical Behaviors.
    Zhao Y; Sun M; Ma W; Kuang H; Xu C
    J Phys Chem Lett; 2017 Nov; 8(22):5633-5642. PubMed ID: 29094951
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoscale surface chemistry directs the tunable assembly of silver octahedra into three two-dimensional plasmonic superlattices.
    Lee YH; Shi W; Lee HK; Jiang R; Phang IY; Cui Y; Isa L; Yang Y; Wang J; Li S; Ling XY
    Nat Commun; 2015 Apr; 6():6990. PubMed ID: 25923409
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quasicrystalline order in self-assembled binary nanoparticle superlattices.
    Talapin DV; Shevchenko EV; Bodnarchuk MI; Ye X; Chen J; Murray CB
    Nature; 2009 Oct; 461(7266):964-7. PubMed ID: 19829378
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.