These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 36582220)
21. A model for carbohydrate metabolism in the diatom Phaeodactylum tricornutum deduced from comparative whole genome analysis. Kroth PG; Chiovitti A; Gruber A; Martin-Jezequel V; Mock T; Parker MS; Stanley MS; Kaplan A; Caron L; Weber T; Maheswari U; Armbrust EV; Bowler C PLoS One; 2008 Jan; 3(1):e1426. PubMed ID: 18183306 [TBL] [Abstract][Full Text] [Related]
22. The transcription factor bZIP14 regulates the TCA cycle in the diatom Matthijs M; Fabris M; Obata T; Foubert I; Franco-Zorrilla JM; Solano R; Fernie AR; Vyverman W; Goossens A EMBO J; 2017 Jun; 36(11):1559-1576. PubMed ID: 28420744 [TBL] [Abstract][Full Text] [Related]
23. Comparison of population growth and photosynthetic apparatus changes in response to different nutrient status in a diatom and a coccolithophore. Zhao Y; Wang Y; Quigg A J Phycol; 2015 Oct; 51(5):872-84. PubMed ID: 26986884 [TBL] [Abstract][Full Text] [Related]
24. HSP70A promotes the photosynthetic activity of marine diatom Phaeodactylum tricornutum under high temperature. Yang W; Gao S; Bao M; Li X; Liu Z; Wang G Plant J; 2024 Jun; 118(6):2085-2093. PubMed ID: 38525917 [TBL] [Abstract][Full Text] [Related]
25. Bioinformatics-Based Screening Approach for the Identification and Characterization of Lipolytic Enzymes from the Marine Diatom Murison V; Hérault J; Schoefs B; Marchand J; Ulmann L Mar Drugs; 2023 Feb; 21(2):. PubMed ID: 36827166 [TBL] [Abstract][Full Text] [Related]
26. Optimized mRuby3 is a Suitable Fluorescent Protein for in vivo Co-localization Studies with GFP in the Diatom Phaeodactylum tricornutum. Marter P; Schmidt S; Kiontke S; Moog D Protist; 2020 Feb; 171(1):125715. PubMed ID: 32062589 [TBL] [Abstract][Full Text] [Related]
27. Isolation of High-Quality Plastids from the Diatom Phaeodactylum tricornutum. Hu F; Yin W; Huang T; Hu H Methods Mol Biol; 2024; 2776():177-183. PubMed ID: 38502504 [TBL] [Abstract][Full Text] [Related]
28. Iron Uptake Mechanisms in Marine Phytoplankton. Sutak R; Camadro JM; Lesuisse E Front Microbiol; 2020; 11():566691. PubMed ID: 33250865 [TBL] [Abstract][Full Text] [Related]
29. Phytate as a Phosphorus Nutrient with Impacts on Iron Stress-Related Gene Expression for Phytoplankton: Insights from the Diatom Li J; Zhang K; Lin X; Li L; Lin S Appl Environ Microbiol; 2022 Jan; 88(2):e0209721. PubMed ID: 34757820 [TBL] [Abstract][Full Text] [Related]
30. Development of endogenous promoters that drive high-level expression of introduced genes in the model diatom Phaeodactylum tricornutum. Watanabe Y; Kadono T; Kira N; Suzuki K; Iwata O; Ohnishi K; Yamaguchi H; Adachi M Mar Genomics; 2018 Dec; 42():41-48. PubMed ID: 30509379 [TBL] [Abstract][Full Text] [Related]
31. Dicer-dependent heterochromatic small RNAs in the model diatom species Phaeodactylum tricornutum. Grypioti E; Richard H; Kryovrysanaki N; Jaubert M; Falciatore A; Verret F; Kalantidis K New Phytol; 2024 Jan; 241(2):811-826. PubMed ID: 38044751 [TBL] [Abstract][Full Text] [Related]
32. Multisignal control of expression of the LHCX protein family in the marine diatom Phaeodactylum tricornutum. Taddei L; Stella GR; Rogato A; Bailleul B; Fortunato AE; Annunziata R; Sanges R; Thaler M; Lepetit B; Lavaud J; Jaubert M; Finazzi G; Bouly JP; Falciatore A J Exp Bot; 2016 Jun; 67(13):3939-51. PubMed ID: 27225826 [TBL] [Abstract][Full Text] [Related]
33. Efficient Transformation of the Diatoms Phaeodactylum tricornutum by Multipulse Electroporation. Ifuku K; Yan D Methods Mol Biol; 2020; 2050():169-174. PubMed ID: 31468491 [TBL] [Abstract][Full Text] [Related]
34. Characterization of a GDP-Fucose Transporter and a Fucosyltransferase Involved in the Fucosylation of Glycoproteins in the Diatom Zhang P; Burel C; Plasson C; Kiefer-Meyer MC; Ovide C; Gügi B; Wan C; Teo G; Mak A; Song Z; Driouich A; Lerouge P; Bardor M Front Plant Sci; 2019; 10():610. PubMed ID: 31164895 [TBL] [Abstract][Full Text] [Related]
35. Quantitative proteomic analyses reveal the impact of nitrogen starvation on the proteome of the model diatom Phaeodactylum tricornutum. Lupette J; Tardif M; Brugière S; Couté Y; Salvaing J; Maréchal E Proteomics; 2022 Nov; 22(22):e2200155. PubMed ID: 36168874 [TBL] [Abstract][Full Text] [Related]
36. Plasma Membrane-Type Aquaporins from Marine Diatoms Function as CO Matsui H; Hopkinson BM; Nakajima K; Matsuda Y Plant Physiol; 2018 Sep; 178(1):345-357. PubMed ID: 30076224 [TBL] [Abstract][Full Text] [Related]
37. Whole-genome expression analysis reveals a role for death-related genes in stress acclimation of the diatom Thalassiosira pseudonana. Thamatrakoln K; Korenovska O; Niheu AK; Bidle KD Environ Microbiol; 2012 Jan; 14(1):67-81. PubMed ID: 21453404 [TBL] [Abstract][Full Text] [Related]
38. Plasma membrane to vacuole traffic induced by glucose starvation requires Gga2-dependent sorting at the trans-Golgi network. Buelto D; Hung CW; Aoh QL; Lahiri S; Duncan MC Biol Cell; 2020 Nov; 112(11):349-367. PubMed ID: 32761633 [TBL] [Abstract][Full Text] [Related]
39. Proteomic and biochemical responses to different concentrations of CO Wu S; Gu W; Jia S; Wang L; Wang L; Liu X; Zhou L; Huang A; Wang G Biotechnol Biofuels; 2021 Dec; 14(1):235. PubMed ID: 34906223 [TBL] [Abstract][Full Text] [Related]
40. Mechanistic understanding of the toxicity of triphenyl phosphate (TPhP) to the marine diatom Phaeodactylum tricornutum: Targeting chloroplast and mitochondrial dysfunction. Liu Q; Tang X; Zhang X; Tong X; Sun Z; Zhang X Environ Pollut; 2022 Feb; 295():118670. PubMed ID: 34902529 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]