These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 36583362)

  • 1. High-throughput quantitative binding analysis of DNA aptamers using exonucleases.
    Canoura J; Alkhamis O; Liu Y; Willis C; Xiao Y
    Nucleic Acids Res; 2023 Feb; 51(4):e19. PubMed ID: 36583362
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using Exonucleases for Aptamer Characterization, Engineering, and Sensing.
    Alkhamis O; Canoura J; Ly PT; Xiao Y
    Acc Chem Res; 2023 Jul; 56(13):1731-1743. PubMed ID: 37314701
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Label-free profiling of DNA aptamer-small molecule binding using T5 exonuclease.
    Alkhamis O; Yang W; Farhana R; Yu H; Xiao Y
    Nucleic Acids Res; 2020 Nov; 48(20):e120. PubMed ID: 33053182
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accelerating Post-SELEX Aptamer Engineering Using Exonuclease Digestion.
    Canoura J; Yu H; Alkhamis O; Roncancio D; Farhana R; Xiao Y
    J Am Chem Soc; 2021 Jan; 143(2):805-816. PubMed ID: 33378616
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Perspective on the Future Role of Aptamers in Analytical Chemistry.
    Wu Y; Belmonte I; Sykes KS; Xiao Y; White RJ
    Anal Chem; 2019 Dec; 91(24):15335-15344. PubMed ID: 31714748
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advancements in Aptamer Discovery Technologies.
    Gotrik MR; Feagin TA; Csordas AT; Nakamoto MA; Soh HT
    Acc Chem Res; 2016 Sep; 49(9):1903-10. PubMed ID: 27526193
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Facile characterization of aptamer kinetic and equilibrium binding properties using surface plasmon resonance.
    Chang AL; McKeague M; Smolke CD
    Methods Enzymol; 2014; 549():451-66. PubMed ID: 25432760
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-throughput methods in aptamer discovery and analysis.
    Cole KH; Lupták A
    Methods Enzymol; 2019; 621():329-346. PubMed ID: 31128787
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graphene oxide and Lambda exonuclease assisted screening of L-carnitine aptamers and the site-directed mutagenesis design of C-rich structure aptamer.
    Xing L; Zhao Y; Gong M; Liu X; Zhang Y; Li D; He Z; Yan P; Yang J
    Biochem Biophys Res Commun; 2021 Mar; 545():171-176. PubMed ID: 33556657
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of Cell-Specific Aptamers: Recent Advances and Insight into the Selection Procedures.
    Rahimizadeh K; AlShamaileh H; Fratini M; Chakravarthy M; Stephen M; Shigdar S; Veedu RN
    Molecules; 2017 Nov; 22(12):. PubMed ID: 29186905
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA aptamer generation by ExSELEX using genetic alphabet expansion with a mini-hairpin DNA stabilization method.
    Hirao I; Kimoto M; Lee KH
    Biochimie; 2018 Feb; 145():15-21. PubMed ID: 28916151
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterisation of aptamer-target interactions by branched selection and high-throughput sequencing of SELEX pools.
    Dupont DM; Larsen N; Jensen JK; Andreasen PA; Kjems J
    Nucleic Acids Res; 2015 Dec; 43(21):e139. PubMed ID: 26163061
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent Advances in Aptamer Discovery and Applications.
    Zhang Y; Lai BS; Juhas M
    Molecules; 2019 Mar; 24(5):. PubMed ID: 30866536
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Absolute quantification of cell-bound DNA aptamers during SELEX.
    Avci-Adali M; Wilhelm N; Perle N; Stoll H; Schlensak C; Wendel HP
    Nucleic Acid Ther; 2013 Apr; 23(2):125-30. PubMed ID: 23405949
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tuning Biosensor Cross-Reactivity Using Aptamer Mixtures.
    Liu Y; Yu H; Alkhamis O; Moliver J; Xiao Y
    Anal Chem; 2020 Apr; 92(7):5041-5047. PubMed ID: 32181647
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving aptamer performance with nucleic acid mimics: de novo and post-SELEX approaches.
    Oliveira R; Pinho E; Sousa AL; DeStefano JJ; Azevedo NF; Almeida C
    Trends Biotechnol; 2022 May; 40(5):549-563. PubMed ID: 34756455
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing aptamer function and stability via in vitro selection using modified nucleic acids.
    Meek KN; Rangel AE; Heemstra JM
    Methods; 2016 Aug; 106():29-36. PubMed ID: 27012179
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selection and characterization of DNA aptamers with binding selectivity to Campylobacter jejuni using whole-cell SELEX.
    Dwivedi HP; Smiley RD; Jaykus LA
    Appl Microbiol Biotechnol; 2010 Aug; 87(6):2323-34. PubMed ID: 20582587
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advances in Aptamer-Based Biosensors and Cell-Internalizing SELEX Technology for Diagnostic and Therapeutic Application.
    Gan Z; Roslan MAM; Abd Shukor MY; Halim M; Yasid NA; Abdullah J; Md Yasin IS; Wasoh H
    Biosensors (Basel); 2022 Oct; 12(11):. PubMed ID: 36354431
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RaptRanker: in silico RNA aptamer selection from HT-SELEX experiment based on local sequence and structure information.
    Ishida R; Adachi T; Yokota A; Yoshihara H; Aoki K; Nakamura Y; Hamada M
    Nucleic Acids Res; 2020 Aug; 48(14):e82. PubMed ID: 32537639
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.