These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 36583648)

  • 1. Fast Response and Visual Transparency Switching Hydrochromic Film Based on the Rational Structure of Cellulose/Poloxamer Copolymers Design for Smart Window.
    Guo Y; An X; Qian X
    Macromol Rapid Commun; 2023 Mar; 44(6):e2200831. PubMed ID: 36583648
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrochromic and piezochromic dual-responsive optical film derived from poloxamer and ethyl cellulose for visual fingerprints identification.
    Guo Y; An X; Qian X
    Int J Biol Macromol; 2024 Jun; 270(Pt 1):132377. PubMed ID: 38759412
    [TBL] [Abstract][Full Text] [Related]  

  • 3.
    Yoo GY; Lee S; Ko M; Kim H; Lee KN; Kim W; Do YR
    ACS Appl Mater Interfaces; 2020 Nov; 12(44):49982-49991. PubMed ID: 33079523
    [No Abstract]   [Full Text] [Related]  

  • 4. Hydrochromic film for dynamic information storage using cellulose nanofibers and silica nanoparticles.
    Choi J; Hyun J
    Carbohydr Polym; 2024 Mar; 327():121663. PubMed ID: 38171657
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrochromic Approaches to Mapping Human Sweat Pores.
    Park DH; Park BJ; Kim JM
    Acc Chem Res; 2016 Jun; 49(6):1211-22. PubMed ID: 27159417
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduction of the water wettability of cellulose film through controlled heterogeneous modification.
    Li W; Wu Y; Liang W; Li B; Liu S
    ACS Appl Mater Interfaces; 2014 Apr; 6(8):5726-34. PubMed ID: 24666422
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Humidity-Driven Switch in the Transparency of a Nanofiber Film for a Smart Window.
    Xiang C; Wang W; Wang S; Liu S; Li M; Wang D
    J Phys Chem Lett; 2021 Oct; 12(39):9636-9643. PubMed ID: 34586827
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Unusual Photochromic and Hydrochromic Switching Behavior of Cellulose-Embedded 1,8-Naphthalimide-Viologen Derivatives in the Solid-State.
    Sun Z; Ni Y; Prakasam T; Liu W; Wu H; Zhang Z; Di H; Baldridge KK; Trabolsi A; Olson MA
    Chemistry; 2021 Jun; 27(36):9360-9371. PubMed ID: 33831265
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly transparent, weakly hydrophilic and biodegradable cellulose film for flexible electroluminescent devices.
    Tong R; Chen G; Tian J; He M
    Carbohydr Polym; 2020 Jan; 227():115366. PubMed ID: 31590867
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-block poloxamer surfactants suppress aggregation of denatured proteins.
    Mustafi D; Smith CM; Makinen MW; Lee RC
    Biochim Biophys Acta; 2008 Jan; 1780(1):7-15. PubMed ID: 17951011
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-barrier coated bacterial cellulose nanowhiskers films with reduced moisture sensitivity.
    Martínez-Sanz M; Lopez-Rubio A; Lagaron JM
    Carbohydr Polym; 2013 Oct; 98(1):1072-82. PubMed ID: 23987449
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control over hygroscopic growth of saline aqueous aerosol using Pluronic polymer additives.
    Haddrell AE; Hargreaves G; Davies JF; Reid JP
    Int J Pharm; 2013 Feb; 443(1-2):183-92. PubMed ID: 23333755
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel Green Reversible Humidity-Responsive Hemiaminal Dynamic Covalent Network for Smart Window.
    Xing Z; Jia X; Li X; Yang J; Wang S; Li Y; Shao D; Feng L; Song H
    ACS Appl Mater Interfaces; 2023 Mar; 15(8):11053-11061. PubMed ID: 36791287
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hot melt extruded transdermal films based on amorphous solid dispersions in Eudragit RS PO: The inclusion of hydrophilic additives to develop moisture-activated release systems.
    Albarahmieh E; Qi S; Craig DQM
    Int J Pharm; 2016 Nov; 514(1):270-281. PubMed ID: 27863672
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation of formyl cellulose and its enhancement effect on the mechanical and barrier properties of polylactic acid films.
    Long S; Zhong L; Lin X; Chang X; Wu F; Wu R; Xie F
    Int J Biol Macromol; 2021 Mar; 172():82-92. PubMed ID: 33428950
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Designing poly[(R)-3-hydroxybutyrate]-based polyurethane block copolymers for electrospun nanofiber scaffolds with improved mechanical properties and enhanced mineralization capability.
    Liu KL; Choo ES; Wong SY; Li X; He CB; Wang J; Li J
    J Phys Chem B; 2010 Jun; 114(22):7489-98. PubMed ID: 20469884
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ethyl cellulose amphiphilic graft copolymers with LCST-UCST transition: Opposite self-assembly behavior, hydrophilic-hydrophobic surface and tunable crystalline morphologies.
    Yuan H; Chi H; Yuan W
    Carbohydr Polym; 2016 Aug; 147():261-271. PubMed ID: 27178932
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microencapsulation of probiotic bacteria using thermo-sensitive sol-gel polymers for powdered infant formula.
    Penhasi A
    J Microencapsul; 2015; 32(4):372-80. PubMed ID: 26004368
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biocompatible, Biodegradable, and Electroactive Polyurethane-Urea Elastomers with Tunable Hydrophilicity for Skeletal Muscle Tissue Engineering.
    Chen J; Dong R; Ge J; Guo B; Ma PX
    ACS Appl Mater Interfaces; 2015 Dec; 7(51):28273-85. PubMed ID: 26641320
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional microstructural properties of nanofibrillated cellulose films.
    Miettinen A; Chinga-Carrasco G; Kataja M
    Int J Mol Sci; 2014 Apr; 15(4):6423-40. PubMed ID: 24743887
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.