These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 36583787)

  • 1. Nasal Microbiome in COVID-19: A Potential Role of Corynebacterium in Anosmia.
    Nardelli C; Scaglione GL; Testa D; Setaro M; Russo F; Di Domenico C; Atripaldi L; Zollo M; Corrado F; Salvatore P; Pinchera B; Gentile I; Capoluongo E
    Curr Microbiol; 2022 Dec; 80(1):53. PubMed ID: 36583787
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nasopharyngeal Microbiome Signature in COVID-19 Positive Patients: Can We Definitively Get a Role to
    Nardelli C; Gentile I; Setaro M; Di Domenico C; Pinchera B; Buonomo AR; Zappulo E; Scotto R; Scaglione GL; Castaldo G; Capoluongo E
    Front Cell Infect Microbiol; 2021; 11():625581. PubMed ID: 33659220
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Entero-Mammary Pathway and Perinatal Transmission of Gut Microbiota and SARS-CoV-2.
    Juárez-Castelán CJ; Vélez-Ixta JM; Corona-Cervantes K; Piña-Escobedo A; Cruz-Narváez Y; Hinojosa-Velasco A; Landero-Montes-de-Oca ME; Davila-Gonzalez E; González-Del-Olmo E; Bastida-Gonzalez F; Zárate-Segura PB; García-Mena J
    Int J Mol Sci; 2022 Sep; 23(18):. PubMed ID: 36142219
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasma Microbiome in COVID-19 Subjects: An Indicator of Gut Barrier Defects and Dysbiosis.
    Prasad R; Patton MJ; Floyd JL; Fortmann S; DuPont M; Harbour A; Wright J; Lamendella R; Stevens BR; Oudit GY; Grant MB
    Int J Mol Sci; 2022 Aug; 23(16):. PubMed ID: 36012406
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diversity, composition, and networking of saliva microbiota distinguish the severity of COVID-19 episodes as revealed by an analysis of 16S rRNA variable V1-V3 region sequences.
    Larios Serrato V; Meza B; Gonzalez-Torres C; Gaytan-Cervantes J; González Ibarra J; Santacruz Tinoco CE; Anguiano Hernández YM; Martínez Miguel B; Cázarez Cortazar A; Sarquiz Martínez B; Alvarado Yaah JE; Mendoza Pérez AR; Palma Herrera JJ; García Soto LM; Chávez Rojas AI; Bravo Mateos G; Samano Marquez G; Grajales Muñiz C; Torres J
    mSystems; 2023 Aug; 8(4):e0106222. PubMed ID: 37310423
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The gut microbiome of COVID-19 recovered patients returns to uninfected status in a minority-dominated United States cohort.
    Newsome RC; Gauthier J; Hernandez MC; Abraham GE; Robinson TO; Williams HB; Sloan M; Owings A; Laird H; Christian T; Pride Y; Wilson KJ; Hasan M; Parker A; Senitko M; Glover SC; Gharaibeh RZ; Jobin C
    Gut Microbes; 2021; 13(1):1-15. PubMed ID: 34100340
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of nasal bacterial microbiome diversity on the pathogenesis and prognosis of chronic rhinosinusitis patients with polyps.
    Gan W; Zhang H; Yang F; Liu S; Liu F; Meng J
    Eur Arch Otorhinolaryngol; 2021 Apr; 278(4):1075-1088. PubMed ID: 32960349
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SARS-CoV-2 infection and viral load are associated with the upper respiratory tract microbiome.
    Rosas-Salazar C; Kimura KS; Shilts MH; Strickland BA; Freeman MH; Wessinger BC; Gupta V; Brown HM; Rajagopala SV; Turner JH; Das SR
    J Allergy Clin Immunol; 2021 Apr; 147(4):1226-1233.e2. PubMed ID: 33577896
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Pro-Inflammatory Gut Microbiome Characterizes SARS-CoV-2 Infected Patients and a Reduction in the Connectivity of an Anti-Inflammatory Bacterial Network Associates With Severe COVID-19.
    Reinold J; Farahpour F; Fehring C; Dolff S; Konik M; Korth J; van Baal L; Hoffmann D; Buer J; Witzke O; Westendorf AM; Kehrmann J
    Front Cell Infect Microbiol; 2021; 11():747816. PubMed ID: 34869058
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Super Dominant Pathobiontic Bacteria in the Nasopharyngeal Microbiota Cause Secondary Bacterial Infection in COVID-19 Patients.
    Qin T; Wang Y; Deng J; Xu B; Zhu X; Wang J; Zhou H; Zhao N; Jin F; Ren H; Wang H; Li Q; Xu X; Guo Y; Li R; Xiong Y; Wang X; Guo J; Zheng H; Hou X; Wan K; Zhang J; Lu J; Kan B; Xu J
    Microbiol Spectr; 2022 Jun; 10(3):e0195621. PubMed ID: 35579467
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Altitude-adaption of gut microbiota in Tibetan chicken.
    Du X; Li F; Kong F; Cui Z; Li D; Wang Y; Zhu Q; Shu G; Tian Y; Zhang Y; Zhao X
    Poult Sci; 2022 Sep; 101(9):101998. PubMed ID: 35841636
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Faecal microbiome sequences in relation to the egg-laying performance of hens using amplicon-based metagenomic association analysis.
    Elokil AA; Magdy M; Melak S; Ishfaq H; Bhuiyan A; Cui L; Jamil M; Zhao S; Li S
    Animal; 2020 Apr; 14(4):706-715. PubMed ID: 31619307
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Primary progressive multiple sclerosis in a Russian cohort: relationship with gut bacterial diversity.
    Kozhieva M; Naumova N; Alikina T; Boyko A; Vlassov V; Kabilov MR
    BMC Microbiol; 2019 Dec; 19(1):309. PubMed ID: 31888483
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Composition and variation of respiratory microbiota in healthy military personnel.
    Hang J; Zavaljevski N; Yang Y; Desai V; Ruck RC; Macareo LR; Jarman RG; Reifman J; Kuschner RA; Keiser PB
    PLoS One; 2017; 12(12):e0188461. PubMed ID: 29216202
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Variability and diversity of nasopharyngeal microbiota in children: a metagenomic analysis.
    Bogaert D; Keijser B; Huse S; Rossen J; Veenhoven R; van Gils E; Bruin J; Montijn R; Bonten M; Sanders E
    PLoS One; 2011 Feb; 6(2):e17035. PubMed ID: 21386965
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human Nasal Microbiome as Characterized by Metagenomics Differs Markedly Between Rural and Industrial Communities in Egypt.
    Ahmed N; Mahmoud NF; Solyman S; Hanora A
    OMICS; 2019 Nov; 23(11):573-582. PubMed ID: 31651219
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nasopharyngeal microbiome reveals the prevalence of opportunistic pathogens in SARS-CoV-2 infected individuals and their association with host types.
    Gupta A; Karyakarte R; Joshi S; Das R; Jani K; Shouche Y; Sharma A
    Microbes Infect; 2022 Feb; 24(1):104880. PubMed ID: 34425246
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SARS-CoV-2 Infection is Associated with Age- and Gender-Specific Changes in the Nasopharyngeal Microbiome.
    Bozza S; Nunzi E; Frias-Mazuecos A; Pieraccini G; Pariano M; Renga G; Mencacci A; Talesa VN; Antognelli C; Puccetti P; Romani L; Costantini C
    Front Biosci (Landmark Ed); 2024 Feb; 29(2):59. PubMed ID: 38420819
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Analysis of the dynamic changes in gut microbiota in patients with extremely severe burns by 16S ribosomal RNA high-throughput sequencing technology].
    Pan YY; Fan YF; Li JL; Cui SY; Huang N; Jin GY; Chen C; Zhang C
    Zhonghua Shao Shang Za Zhi; 2020 Dec; 36(12):1159-1166. PubMed ID: 33379852
    [No Abstract]   [Full Text] [Related]  

  • 20. Bacterial biogeography of adult airways in atopic asthma.
    Durack J; Huang YJ; Nariya S; Christian LS; Ansel KM; Beigelman A; Castro M; Dyer AM; Israel E; Kraft M; Martin RJ; Mauger DT; Rosenberg SR; King TS; White SR; Denlinger LC; Holguin F; Lazarus SC; Lugogo N; Peters SP; Smith LJ; Wechsler ME; Lynch SV; Boushey HA;
    Microbiome; 2018 Jun; 6(1):104. PubMed ID: 29885665
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.