These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 36583837)

  • 1. A deep learning model based on fusion images of chest radiography and X-ray sponge images supports human visual characteristics of retained surgical items detection.
    Kawakubo M; Waki H; Shirasaka T; Kojima T; Mikayama R; Hamasaki H; Akamine H; Kato T; Baba S; Ushiro S; Ishigami K
    Int J Comput Assist Radiol Surg; 2023 Aug; 18(8):1459-1467. PubMed ID: 36583837
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel Computer-Aided Diagnosis Software for the Prevention of Retained Surgical Items.
    Yamaguchi S; Soyama A; Ono S; Hamauzu S; Yamada M; Fukuda T; Hidaka M; Tsurumoto T; Uetani M; Eguchi S
    J Am Coll Surg; 2021 Dec; 233(6):686-696. PubMed ID: 34592404
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Object Detection Model Utilizing Deep Learning to Identify Retained Surgical Gauze in the Body on Postoperative Radiography: Phantom Study].
    Tanuma T; Kobayashi T; Takaya E; Suzuki D; Inoue M; Yoshikawa T; Kobayashi Y
    Nihon Hoshasen Gijutsu Gakkai Zasshi; 2021; 77(8):821-827. PubMed ID: 34421070
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computer-aided detection of retained surgical needles from postoperative radiographs.
    Sengupta A; Hadjiiski L; Chan HP; Cha K; Chronis N; Marentis TC
    Med Phys; 2017 Jan; 44(1):180-191. PubMed ID: 28044343
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chest x-ray automated triage: A semiologic approach designed for clinical implementation, exploiting different types of labels through a combination of four Deep Learning architectures.
    Mosquera C; Diaz FN; Binder F; Rabellino JM; Benitez SE; Beresñak AD; Seehaus A; Ducrey G; Ocantos JA; Luna DR
    Comput Methods Programs Biomed; 2021 Jul; 206():106130. PubMed ID: 34023576
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clinical Validation of Computer-Aided Diagnosis Software for Preventing Retained Surgical Sponges.
    Kurisaki K; Soyama A; Hamauzu S; Yamada M; Yamaguchi S; Matsuguma K; Kerkhof E; Fukuda T; Toya R; Eguchi S
    J Am Coll Surg; 2024 May; 238(5):856-860. PubMed ID: 38258847
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A radiomics-boosted deep-learning model for COVID-19 and non-COVID-19 pneumonia classification using chest x-ray images.
    Hu Z; Yang Z; Lafata KJ; Yin FF; Wang C
    Med Phys; 2022 May; 49(5):3213-3222. PubMed ID: 35263458
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Effect of Radiofrequency Technology on Time Spent Searching for Surgical Sponges and Associated Costs.
    Steelman VM; Schaapveld AG; Storm HE; Perkhounkova Y; Shane DM
    AORN J; 2019 Jun; 109(6):718-727. PubMed ID: 31135978
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep Learning on Chest X-ray Images to Detect and Evaluate Pneumonia Cases at the Era of COVID-19.
    Hammoudi K; Benhabiles H; Melkemi M; Dornaika F; Arganda-Carreras I; Collard D; Scherpereel A
    J Med Syst; 2021 Jun; 45(7):75. PubMed ID: 34101042
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel multimodal fusion framework for early diagnosis and accurate classification of COVID-19 patients using X-ray images and speech signal processing techniques.
    Kumar S; Chaube MK; Alsamhi SH; Gupta SK; Guizani M; Gravina R; Fortino G
    Comput Methods Programs Biomed; 2022 Nov; 226():107109. PubMed ID: 36174422
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Segmentation Performance Comparison Considering Regional Characteristics in Chest X-ray Using Deep Learning.
    Lee HM; Kim YJ; Kim KG
    Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35590833
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of Retained Foreign Objects in Upper Extremity Surgical Procedures With Incisions of Two Centimeters or Smaller.
    Tofte JN; Caldwell LS
    Iowa Orthop J; 2017; 37():189-192. PubMed ID: 28852356
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of peripherally inserted central catheter (PICC) in chest X-ray images: A multi-task deep learning model.
    Yu D; Zhang K; Huang L; Zhao B; Zhang X; Guo X; Li M; Gu Z; Fu G; Hu M; Ping Y; Sheng Y; Liu Z; Hu X; Zhao R
    Comput Methods Programs Biomed; 2020 Dec; 197():105674. PubMed ID: 32738678
    [TBL] [Abstract][Full Text] [Related]  

  • 14. UBNet: Deep learning-based approach for automatic X-ray image detection of pneumonia and COVID-19 patients.
    Widodo CS; Naba A; Mahasin MM; Yueniwati Y; Putranto TA; Patra PI
    J Xray Sci Technol; 2022; 30(1):57-71. PubMed ID: 34864714
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Deep Learning Model for Diagnosing COVID-19 and Pneumonia through X-ray.
    Liu X; Wu W; Chun-Wei Lin J; Liu S
    Curr Med Imaging; 2023; 19(4):333-346. PubMed ID: 35692156
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of a comprehensive deep-learning model on the accuracy of chest x-ray interpretation by radiologists: a retrospective, multireader multicase study.
    Seah JCY; Tang CHM; Buchlak QD; Holt XG; Wardman JB; Aimoldin A; Esmaili N; Ahmad H; Pham H; Lambert JF; Hachey B; Hogg SJF; Johnston BP; Bennett C; Oakden-Rayner L; Brotchie P; Jones CM
    Lancet Digit Health; 2021 Aug; 3(8):e496-e506. PubMed ID: 34219054
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a Surgical Sponge Counting System Using Radiographic Images.
    Kusuda K; Yamashita K; Tanaka S; Tanaka K; Ohta Y
    Surg Innov; 2020 Dec; 27(6):647-652. PubMed ID: 32723214
    [No Abstract]   [Full Text] [Related]  

  • 18. Explainable COVID-19 Detection Based on Chest X-rays Using an End-to-End RegNet Architecture.
    Chetoui M; Akhloufi MA; Bouattane EM; Abdulnour J; Roux S; Bernard CD
    Viruses; 2023 Jun; 15(6):. PubMed ID: 37376626
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detecting hip osteoarthritis on clinical CT: a deep learning application based on 2-D summation images derived from CT.
    Gebre RK; Hirvasniemi J; van der Heijden RA; Lantto I; Saarakkala S; Leppilahti J; Jämsä T
    Osteoporos Int; 2022 Feb; 33(2):355-365. PubMed ID: 34476540
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chest X-ray-based opportunistic screening of sarcopenia using deep learning.
    Ryu J; Eom S; Kim HC; Kim CO; Rhee Y; You SC; Hong N
    J Cachexia Sarcopenia Muscle; 2023 Feb; 14(1):418-428. PubMed ID: 36457204
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.